
C Programming: 2D Arrays

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

January 16, 2026

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 1 / 29

Topics Covered

1 Introduction to 2D Arrays

2 Declaration and Initialization

3 Input and Output

4 Row and Column Operations

5 Matrix Operations

6 Diagonal Operations

7 Searching and Pattern

8 Special Matrices

9 Summary

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 2 / 29

What are 2D Arrays?

Array of arrays

Organized in rows and columns (matrix form)

All elements of same type

Stored in contiguous memory (row-major order)

Fixed size at declaration

Common Uses:

Matrices (mathematical operations)

Tables of data

Game boards (chess, tic-tac-toe)

Images (pixel data)

Grids and maps

Indexing:

arr[row][col] - both start at 0

arr[0][0] - first element

arr[rows-1][cols-1] - last element
Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 3 / 29

2D Array Declaration and Syntax

Declaration:
1 data_type array_name[rows][cols];

Examples:
1 int matrix [3][4]; // 3 rows , 4 columns

2 float table [2][5]; // 2 rows , 5 columns

3 char grid [10][10]; // 10x10 grid

Memory Layout (Row-Major):
1 int arr [2][3] = {{1,2,3}, {4,5,6}};

2 // Memory: 1 2 3 4 5 6

3 // arr [0][0]=1 , arr [0][1]=2 , arr [0][2]=3

4 // arr [1][0]=4 , arr [1][1]=5 , arr [1][2]=6

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 4 / 29

Program 1: 2D Array Initialization

1 #include <stdio.h>

2 int main() {

3 int arr1 [2][3] = {{1,2,3}, {4,5,6}};

4 int arr2 [2][3] = {1,2,3,4,5,6};

5 int i, j;

6 printf("Method 1 - Row by row:\n");

7 for (i = 0; i < 2; i++) {

8 for (j = 0; j < 3; j++) {

9 printf("%d ", arr1[i][j]);

10 }

11 printf("\n");

12 }

13 printf("\nMethod 2 - Sequential :\n");

14 for (i = 0; i < 2; i++) {

15 for (j = 0; j < 3; j++) {

16 printf("%d ", arr2[i][j]);

17 }

18 printf("\n");

19 }

20 return 0;

21 }

Output:
Method 1 - Row by row:

1 2 3

4 5 6

Method 2 - Sequential:

1 2 3

4 5 6

Note:

Both methods give same result

Row-by-row is clearer

Sequential fills row-major

Nested loops for access

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 5 / 29

Program 2: Partial Initialization

1 #include <stdio.h>

2 int main() {

3 int arr [3][3] = {{1,2}, {3}, {4,5,6}};

4 int i, j;

5 printf("Partially initialized :\n");

6 for (i = 0; i < 3; i++) {

7 for (j = 0; j < 3; j++) {

8 printf("%d ", arr[i][j]);

9 }

10 printf("\n");

11 }

12 return 0;

13 }

Output:
Partially initialized:

1 2 0

3 0 0

4 5 6

Explanation:

Row 0: 1, 2, rest 0

Row 1: 3, rest 0

Row 2: 4, 5, 6

Unspecified elements = 0

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 6 / 29

Program 3: Zero Initialization

1 #include <stdio.h>

2 int main() {

3 int arr [3][4] = {0};

4 int i, j;

5 printf("Zero initialized 3x4:\n");

6 for (i = 0; i < 3; i++) {

7 for (j = 0; j < 4; j++) {

8 printf("%d ", arr[i][j]);

9 }

10 printf("\n");

11 }

12 return 0;

13 }

Output:
Zero initialized 3x4:

0 0 0 0

0 0 0 0

0 0 0 0

Note:

{0} sets all to zero

Useful for counters, flags

Better than uninitialized

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 7 / 29

Program 4: Reading 2D Array

1 #include <stdio.h>

2 int main() {

3 int arr [2][3];

4 int input [6] = {10 ,20 ,30 ,40 ,50 ,60};

5 int i, j, k = 0;

6 printf("Enter 2x3 matrix :\n");

7 for (i = 0; i < 2; i++) {

8 for (j = 0; j < 3; j++) {

9 arr[i][j] = input[k++];

10 printf("%d ", input[k-1]);

11 }

12 printf("\n");

13 }

14 printf("\nMatrix entered :\n");

15 for (i = 0; i < 2; i++) {

16 for (j = 0; j < 3; j++) {

17 printf("%d ", arr[i][j]);

18 }

19 printf("\n");

20 }

21 return 0;

22 }

Output:
Enter 2x3 matrix:

10 20 30

40 50 60

Matrix entered:

10 20 30

40 50 60

Pattern:

Nested loops for input

Outer loop: rows

Inner loop: columns

Read row by row

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 8 / 29

Program 5: Display with Indices

1 #include <stdio.h>

2 int main() {

3 int arr [3][3] = {{1,2,3},

4 {4,5,6},

5 {7,8,9}};

6 int i, j;

7 printf("Matrix with indices :\n");

8 printf(" ");

9 for (j = 0; j < 3; j++) {

10 printf("col%d ", j);

11 }

12 printf("\n");

13 for (i = 0; i < 3; i++) {

14 printf("row%d: ", i);

15 for (j = 0; j < 3; j++) {

16 printf("%3d ", arr[i][j]);

17 }

18 printf("\n");

19 }

20 return 0;

21 }

Output:
Matrix with indices:

col0 col1 col2

row0: 1 2 3

row1: 4 5 6

row2: 7 8 9

Note:

Shows row and column labels

Helpful for debugging

%3d for alignment

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 9 / 29

Program 6: Sum of Each Row

1 #include <stdio.h>

2 int main() {

3 int arr [3][3] = {{1,2,3},

4 {4,5,6},

5 {7,8,9}};

6 int i, j, sum;

7 printf("Matrix :\n");

8 for (i = 0; i < 3; i++) {

9 for (j = 0; j < 3; j++) {

10 printf("%d ", arr[i][j]);

11 }

12 printf("\n");

13 }

14 printf("\nRow sums:\n");

15 for (i = 0; i < 3; i++) {

16 sum = 0;

17 for (j = 0; j < 3; j++) {

18 sum += arr[i][j];

19 }

20 printf("Row %d: %d\n", i, sum);

21 }

22 return 0;

23 }

Output:
Matrix:

1 2 3

4 5 6

7 8 9

Row sums:

Row 0: 6

Row 1: 15

Row 2: 24

Logic:

For each row

Initialize sum to 0

Add all column elements

Print row sum

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 10 / 29

Program 7: Sum of Each Column

1 #include <stdio.h>

2 int main() {

3 int arr [3][3] = {{1,2,3},

4 {4,5,6},

5 {7,8,9}};

6 int i, j, sum;

7 printf("Matrix :\n");

8 for (i = 0; i < 3; i++) {

9 for (j = 0; j < 3; j++) {

10 printf("%d ", arr[i][j]);

11 }

12 printf("\n");

13 }

14 printf("\nColumn sums:\n");

15 for (j = 0; j < 3; j++) {

16 sum = 0;

17 for (i = 0; i < 3; i++) {

18 sum += arr[i][j];

19 }

20 printf("Col %d: %d\n", j, sum);

21 }

22 return 0;

23 }

Output:
Matrix:

1 2 3

4 5 6

7 8 9

Column sums:

Col 0: 12

Col 1: 15

Col 2: 18

Logic:

For each column

Initialize sum to 0

Add all row elements

Note: loops swapped vs rows

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 11 / 29

Program 8: Maximum in Each Row

1 #include <stdio.h>

2 int main() {

3 int arr [3][4] = {{3,7,2,9},

4 {5,1,8,4},

5 {6,2,7,3}};

6 int i, j, max;

7 printf("Matrix :\n");

8 for (i = 0; i < 3; i++) {

9 for (j = 0; j < 4; j++) {

10 printf("%d ", arr[i][j]);

11 }

12 printf("\n");

13 }

14 printf("\nMax in each row:\n");

15 for (i = 0; i < 3; i++) {

16 max = arr[i][0];

17 for (j = 1; j < 4; j++) {

18 if (arr[i][j] > max) {

19 max = arr[i][j];

20 }

21 }

22 printf("Row %d: %d\n", i, max);

23 }

24 return 0;

25 }

Output:
Matrix:

3 7 2 9

5 1 8 4

6 2 7 3

Max in each row:

Row 0: 9

Row 1: 8

Row 2: 7

Logic:

For each row

Assume first element is max

Compare with rest

Update if larger found

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 12 / 29

Program 9: Matrix Addition

1 #include <stdio.h>

2 int main() {

3 int a[2][2] = {{1,2}, {3 ,4}};

4 int b[2][2] = {{5,6}, {7 ,8}};

5 int sum [2][2];

6 int i, j;

7 for (i = 0; i < 2; i++) {

8 for (j = 0; j < 2; j++) {

9 sum[i][j] = a[i][j] + b[i][j];

10 }

11 }

12 printf("Matrix A:\n");

13 for (i = 0; i < 2; i++) {

14 for (j = 0; j < 2; j++) {

15 printf("%d ", a[i][j]);

16 }

17 printf("\n");

18 }

19 printf("\nMatrix B:\n");

20 for (i = 0; i < 2; i++) {

21 for (j = 0; j < 2; j++) {

22 printf("%d ", b[i][j]);

23 }

24 printf("\n");

25 }

26 printf("\nA + B:\n");

27 for (i = 0; i < 2; i++) {

28 for (j = 0; j < 2; j++) {

29 printf("%d ", sum[i][j]);

30 }

31 printf("\n");

32 }

33 return 0;

34 }

Output:
Matrix A:

1 2

3 4

Matrix B:

5 6

7 8

A + B:

6 8

10 12

Note:

Element-wise addition

Same dimensions required

sum[i][j] = a[i][j] +

b[i][j]

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 13 / 29

Program 10: Matrix Subtraction

1 #include <stdio.h>

2 int main() {

3 int a[2][3] = {{9,8,7}, {6 ,5 ,4}};

4 int b[2][3] = {{1,2,3}, {4 ,5 ,6}};

5 int diff [2][3];

6 int i, j;

7 for (i = 0; i < 2; i++) {

8 for (j = 0; j < 3; j++) {

9 diff[i][j] = a[i][j] - b[i][j];

10 }

11 }

12 printf("A - B:\n");

13 for (i = 0; i < 2; i++) {

14 for (j = 0; j < 3; j++) {

15 printf("%d ", diff[i][j]);

16 }

17 printf("\n");

18 }

19 return 0;

20 }

Output:
A - B:

8 6 4

2 0 -2

Note:

Element-wise subtraction

diff[i][j] = a[i][j] -

b[i][j]

Can produce negatives

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 14 / 29

Program 11: Matrix Multiplication

1 #include <stdio.h>

2 int main() {

3 int a[2][2] = {{1,2}, {3 ,4}};

4 int b[2][2] = {{5,6}, {7 ,8}};

5 int prod [2][2] = {0};

6 int i, j, k;

7 for (i = 0; i < 2; i++) {

8 for (j = 0; j < 2; j++) {

9 for (k = 0; k < 2; k++) {

10 prod[i][j] += a[i][k]*b[k][j];

11 }

12 }

13 }

14 printf("A x B:\n");

15 for (i = 0; i < 2; i++) {

16 for (j = 0; j < 2; j++) {

17 printf("%d ", prod[i][j]);

18 }

19 printf("\n");

20 }

21 return 0;

22 }

Output:
A x B:

19 22

43 50

Formula:

prod[i][j] =

sum(a[i][k]*b[k][j])

Triple nested loop

Result[0][0] = 1*5 + 2*7 = 19

Result[0][1] = 1*6 + 2*8 = 22

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 15 / 29

Program 12: Matrix Transpose

1 #include <stdio.h>

2 int main() {

3 int arr [3][2] = {{1,2}, {3,4}, {5 ,6}};

4 int trans [2][3];

5 int i, j;

6 printf("Original (3x2):\n");

7 for (i = 0; i < 3; i++) {

8 for (j = 0; j < 2; j++) {

9 printf("%d ", arr[i][j]);

10 }

11 printf("\n");

12 }

13 for (i = 0; i < 3; i++) {

14 for (j = 0; j < 2; j++) {

15 trans[j][i] = arr[i][j];

16 }

17 }

18 printf("\nTranspose (2x3):\n");

19 for (i = 0; i < 2; i++) {

20 for (j = 0; j < 3; j++) {

21 printf("%d ", trans[i][j]);

22 }

23 printf("\n");

24 }

25 return 0;

26 }

Output:
Original (3x2):

1 2

3 4

5 6

Transpose (2x3):

1 3 5

2 4 6

Logic:

Swap rows and columns

trans[j][i] = arr[i][j]

Dimensions reversed

3x2 becomes 2x3

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 16 / 29

Program 13: Sum of Diagonals

1 #include <stdio.h>

2 int main() {

3 int arr [3][3] = {{1,2,3},

4 {4,5,6},

5 {7,8,9}};

6 int i, j;

7 int main_diag = 0, anti_diag = 0;

8 printf("Matrix :\n");

9 for (i = 0; i < 3; i++) {

10 for (j = 0; j < 3; j++) {

11 printf("%d ", arr[i][j]);

12 }

13 printf("\n");

14 }

15 for (i = 0; i < 3; i++) {

16 main_diag += arr[i][i];

17 anti_diag += arr[i][3-1-i];

18 }

19 printf("\nMain diagonal: %d\n",

20 main_diag);

21 printf("Anti diagonal: %d\n",

22 anti_diag);

23 return 0;

24 }

Output:
Matrix:

1 2 3

4 5 6

7 8 9

Main diagonal: 15

Anti diagonal: 15

Note:

Main diagonal: i == j

Elements: 1, 5, 9

Anti diagonal: i + j == n-1

Elements: 3, 5, 7

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 17 / 29

Program 14: Identity Matrix

1 #include <stdio.h>

2 int main() {

3 int identity [4][4] = {0};

4 int i, j;

5 for (i = 0; i < 4; i++) {

6 identity[i][i] = 1;

7 }

8 printf("4x4 Identity Matrix :\n");

9 for (i = 0; i < 4; i++) {

10 for (j = 0; j < 4; j++) {

11 printf("%d ", identity[i][j]);

12 }

13 printf("\n");

14 }

15 return 0;

16 }

Output:
4x4 Identity Matrix:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Note:

Initialize all to 0

Set diagonal to 1

identity[i][i] = 1

Used in matrix math

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 18 / 29

Program 15: Search in 2D Array

1 #include <stdio.h>

2 int main() {

3 int arr [3][4] = {{10,20 ,30,40} ,

4 {15,25,35,45},

5 {12 ,22 ,32 ,42}};

6 int target = 35;

7 int found = 0;

8 int i, j;

9 for (i = 0; i < 3; i++) {

10 for (j = 0; j < 4; j++) {

11 if (arr[i][j] == target) {

12 printf("Found %d at [%d][%d]\n",

13 target , i, j);

14 found = 1;

15 break;

16 }

17 }

18 if (found) break;

19 }

20 if (!found) {

21 printf("%d not found\n", target);

22 }

23 return 0;

24 }

Output:
Found 35 at [1][2]

Logic:

Nested loops to check all

Compare each element

Break from inner loop

Break from outer if found

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 19 / 29

Program 16: Print Border Elements

1 #include <stdio.h>

2 int main() {

3 int arr [4][4] = {{1,2,3,4},

4 {5,6,7,8},

5 {9,10,11,12},

6 {13 ,14 ,15 ,16}};

7 int i, j;

8 printf("Matrix :\n");

9 for (i = 0; i < 4; i++) {

10 for (j = 0; j < 4; j++) {

11 printf("%2d ", arr[i][j]);

12 }

13 printf("\n");

14 }

15 printf("\nBorder elements :\n");

16 for (i = 0; i < 4; i++) {

17 for (j = 0; j < 4; j++) {

18 if (i==0 || i==3 || j==0 || j==3) {

19 printf("%2d ", arr[i][j]);

20 } else {

21 printf(" ");

22 }

23 }

24 printf("\n");

25 }

26 return 0;

27 }

Output:
Matrix:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Border elements:

1 2 3 4

5 8

9 12

13 14 15 16

Logic:

First/last row

First/last column

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 20 / 29

Program 17: Spiral Print

1 #include <stdio.h>

2 int main() {

3 int arr [3][3] = {{1,2,3},

4 {4,5,6},

5 {7,8,9}};

6 int top=0, bottom=2, left=0, right =2;

7 int i;

8 printf("Matrix :\n");

9 for (i = 0; i < 3; i++) {

10 printf("%d %d %d\n",

11 arr[i][0], arr[i][1], arr[i][2]);

12 }

13 printf("\nSpiral: ");

14 while (top <= bottom && left <= right) {

15 for (i=left; i<=right; i++)

16 printf("%d ", arr[top][i]);

17 top++;

18 for (i=top; i<= bottom; i++)

19 printf("%d ", arr[i][right]);

20 right --;

21 if (top <= bottom) {

22 for (i=right; i>=left; i--)

23 printf("%d ", arr[bottom][i]);

24 bottom --;

25 }

26 if (left <= right) {

27 for (i=bottom; i>=top; i--)

28 printf("%d ", arr[i][left]);

29 left ++;

30 }

31 }

32 printf("\n");

33 return 0;

34 }

Output:
Matrix:

1 2 3

4 5 6

7 8 9

Spiral: 1 2 3 6 9 8 7 4 5

Logic:

Right -¿ Down -¿ Left -¿ Up

Shrink boundaries

Continue until done

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 21 / 29

Program 18: Check Symmetric Matrix

1 #include <stdio.h>

2 int main() {

3 int arr [3][3] = {{1,2,3},

4 {2,4,5},

5 {3,5,6}};

6 int i, j, symmetric = 1;

7 printf("Matrix :\n");

8 for (i = 0; i < 3; i++) {

9 for (j = 0; j < 3; j++) {

10 printf("%d ", arr[i][j]);

11 }

12 printf("\n");

13 }

14 for (i = 0; i < 3; i++) {

15 for (j = 0; j < 3; j++) {

16 if (arr[i][j] != arr[j][i]) {

17 symmetric = 0;

18 break;

19 }

20 }

21 if (! symmetric) break;

22 }

23 printf("\n%s\n",

24 symmetric ? "Symmetric" :

25 "Not symmetric");

26 return 0;

27 }

Output:
Matrix:

1 2 3

2 4 5

3 5 6

Symmetric

Note:

Symmetric: arr[i][j] ==

arr[j][i]

Equal to its transpose

Must be square matrix

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 22 / 29

Program 19: Upper Triangular Matrix

1 #include <stdio.h>

2 int main() {

3 int arr [4][4] = {0};

4 int i, j, val = 1;

5 for (i = 0; i < 4; i++) {

6 for (j = i; j < 4; j++) {

7 arr[i][j] = val++;

8 }

9 }

10 printf("Upper Triangular :\n");

11 for (i = 0; i < 4; i++) {

12 for (j = 0; j < 4; j++) {

13 printf("%2d ", arr[i][j]);

14 }

15 printf("\n");

16 }

17 return 0;

18 }

Output:
Upper Triangular:

1 2 3 4

0 5 6 7

0 0 8 9

0 0 0 10

Note:

Elements above diagonal

j >= i

Below diagonal: all zeros

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 23 / 29

Program 20: Lower Triangular Matrix

1 #include <stdio.h>

2 int main() {

3 int arr [4][4] = {0};

4 int i, j, val = 1;

5 for (i = 0; i < 4; i++) {

6 for (j = 0; j <= i; j++) {

7 arr[i][j] = val++;

8 }

9 }

10 printf("Lower Triangular :\n");

11 for (i = 0; i < 4; i++) {

12 for (j = 0; j < 4; j++) {

13 printf("%2d ", arr[i][j]);

14 }

15 printf("\n");

16 }

17 return 0;

18 }

Output:
Lower Triangular:

1 0 0 0

2 3 0 0

4 5 6 0

7 8 9 10

Note:

Elements below diagonal

j <= i

Above diagonal: all zeros

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 24 / 29

2D Arrays - Summary

Key Points:

Array of arrays: arr[rows][cols]

Zero-based indexing for both dimensions

Row-major memory layout

Nested loops for traversal

Initialization: row-by-row or sequential

Matrix operations: add, subtract, multiply, transpose

Row operations: sum, max, min per row

Column operations: sum, max, min per column

Diagonal operations: main and anti diagonal

Search requires nested loops

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 25 / 29

Matrix Operations Reference

Operation Formula/Note
Addition c[i][j] = a[i][j] + b[i][j]

Subtraction c[i][j] = a[i][j] - b[i][j]

Multiplication c[i][j] = sum(a[i][k] * b[k][j])

Transpose trans[j][i] = arr[i][j]

Main Diagonal Elements where i == j

Anti Diagonal Elements where i + j == n-1

Symmetric arr[i][j] == arr[j][i]

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 26 / 29

Best Practices

1 Always initialize 2D arrays

2 Use constants for dimensions

3 Check bounds carefully (two dimensions!)

4 Outer loop = rows, inner loop = columns (usually)

5 Pass dimensions when using functions

6 Visualize the matrix structure

7 Use meaningful names - not just arr

8 Format output for readability

9 Comment complex traversal patterns

10 Test with small matrices first

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 27 / 29

Common Mistakes

1 Index confusion: arr[j][i] instead of arr[i][j]

2 Wrong loop bounds: Using rows for columns or vice versa

3 Out of bounds: Accessing arr[rows][cols]

4 Dimension mismatch: Adding matrices of different sizes

5 Uninitialized arrays: Reading before writing

6 Wrong multiplication: Element-wise instead of matrix multiply

7 Forgetting break: In nested search loops

8 Swap confusion: In transpose with same array

9 Diagonal mistakes: Off-by-one in anti-diagonal

10 Memory layout: Assuming column-major instead of row-major

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 28 / 29

Practice Exercises

Try these programs:

1 Rotate matrix 90 degrees clockwise

2 Check if matrix is diagonal

3 Find saddle point (min in row, max in column)

4 Print matrix in zigzag pattern

5 Interchange rows and columns

6 Check if two matrices are equal

7 Find determinant of 2x2 matrix

8 Convert matrix to 1D array

9 Find sum of all elements

10 Check if matrix is sparse (mostly zeros)

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 29 / 29

	Introduction to 2D Arrays
	Declaration and Initialization
	Input and Output
	Row and Column Operations
	Matrix Operations
	Diagonal Operations
	Searching and Pattern
	Special Matrices
	Summary

