C Programming: 2D Arrays

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

January 16, 2026

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026

Topics Covered

@ Introduction to 2D Arrays
© Declaration and Initialization
© Input and Output

@ Row and Column Operations
© Matrix Operations

@ Diagonal Operations

@ Searching and Pattern

@ Special Matrices

© Summary

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026

What are 2D Arrays?

Array of arrays

Organized in rows and columns (matrix form)
All elements of same type

Stored in contiguous memory (row-major order)
Fixed size at declaration

Common Uses:

Matrices (mathematical operations)
Tables of data

Game boards (chess, tic-tac-toe)
Images (pixel data)

Grids and maps

Indexing:
@ arr[row] [col] - both start at 0
@ arr[0] [0] - first element
@ arr[rows-1] [cols-1] - last element

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026

2D Array Declaration and Syntax

Declaration:

data_type array_name[rows][cols];

Examples:

int matrix [3][4]; // 3 rows, 4 columns
float table[2][5]; // 2 rows, 5 columns
char grid[10][10]; // 10x10 grid

Memory Layout (Row-Major):

int arr[2][3] = {{1,2,3}, {4,5,6}};

// Memory: 1 2 3 4 5 6

// arr[0][0]=1, arr([0][1]=2, arr[0][2]=3
// arr[1][0]=4, arr[1][1]=5, arr([1][2]=6

Prof. Jyotiprakash Mishra

January 16, 2026

Program 1: 2D Array Initialization

! #include <stdio.h> output:

’ int main() {

3 int arri[2]1[3] = {{1,2,3}, {4,5,6}}; othod & = Bow by =Seus

1 int arr2(2]1(3] = {1,2,3,4,5,6}; 123

> int i, j; 4 56

) printf ("Method 1 - Row by row:\n");

’ for (i = 0; i < 2; i++) { Method 2 - Sequential:

3 for (j = 0; j < 3; j++) { 138

) printf ("%d ", arr1[il[jl); 458

)

| printf ("\n");

2 Note:

3 printf ("\nMethod 2 - Sequential:\n");

3 for (i = 0; i < 25 i++) { 1

) G Sor SIS @ Both methods give same result
) printf ("%d ", arr2[il[jl); .

7 @ Row-by-row is clearer

3 printf ("\n"); . . .
3 @ Sequential fills row-major
) return O;

L}

@ Nested loops for access

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026

e

Program 2: Partial Initialization

#include <stdio.h>
int main() {
int arr[31[3] = {{1,2}, {3}, {4,5,6}};
int i, j;
printf ("Partially initialized:\n");
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
printf ("%d ", arr[il[jl);

printf ("\n");

return O;

}

Prof. Jyotiprakash Mishra

Output:

artially initialized:

Parti
120
300
4 56

C Programming: 2D Arrays

Explanation:
@ Row 0: 1, 2, rest 0
@ Row 1: 3, rest 0
@ Row 2: 4,5, 6

@ Unspecified elements = 0

January 16, 2026

B e

Program 3: Zero Initial

#include <stdio.h>
int main() {
int arr[3]1[4] = {0};
int i, j;
printf ("Zero initialized 3x4:\n")
for (i = 0; i < 3; i++) {
for (j = 0; j < 4; j++) {
printf ("%d ", arr[il[jl);

printf ("\n");
}

return O;

Prof. Jyotiprakash Mishra

ization

Note:

o {0} sets all to zero

@ Useful for counters, flags

@ Better than uninitialized

C Programming: 2D Arrays

January 16, 2026

Program 4: Reading 2D Array

#include <stdio.h>

Output:

int main() {
int arr[2][3];
int input[6] = {10,20,30,40,50,60};
int i, j, k = 0;
printf ("Enter 2x3 matrix:\n");
for (i = 0; i < 2; i++) {
for (j = 0; j < 35 j++) {
arr[i]1[j] = input[k++];

Enter 2x3 matrix:
10 20 30
40 50 60

Matrix entered:
10 20 30
40 50 60

printf ("%d ", input[k-11);
}
printf ("\n");

printf ("\nMatrix entered:\n");
for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
printf("%d ", arr[il[jl1);
}
printf ("\n");

return O;

Prof. Jyotiprakash Mishra

Pattern:
@ Nested loops for input
@ Outer loop: rows
@ Inner loop: columns
[~

Read row by row

January 16, 2026

Program 5: Display with Indices

e

#include <stdio.h>
int main() {
int arr[3]1[3] = {{1,2,3},

{4,5,6},
{7,8,9}};
int i, j;
printf ("Matrix with indices:\n");
printf (" ")

for (j = 0; j < 3; j++) {
printf("col%d ", j);

¥

printf ("\n");

for (i = 0; i < 3; i++) {
printf ("row%d: ", i);
for (j = 0; j < 3; j++) {

printf ("%3d ", arr[il[j1);

printf ("\n");

return O;

Prof. Jyotiprakash Mishra

Output:

Matrix with indices:
col0 coll col2

row0: 1 2 3
rowl: 4 5 6
row2: 7 8 9
Note:

@ Shows row and column labels
@ Helpful for debugging

@ %3d for alignment

January 16, 2026

Program 6: Sum of Each Row

. #include <stdio.h> Output:
] int main() { K
3 int arr[31[3]1 = {{1,2,3}, Matsizl
! {4,5,6}, 233
5 {7,8,9}}; sBE
) int i, j, sum; 789
/ printf ("Matrix:\n");
] for (i = 0; i < 3; i++) { Row sums:
) for (j = 0; j < 3; j++) { Row 0: 6
) printf ("%d ", arr[il[jl); Row 1: 15
] Row 2: 24
] printf ("\n");
3
3 printf ("\nRow sums:\n"); Logic:
> for (i = 0; i < 3; i++) {
) sum = O0;
7 e 0 <3y e o @ For each row
3 sum += arr[il[j]; .
) @ Initialize sum to 0
) printf ("Row %d: %d\n", i, sum);
-y @ Add all column elements
4 return O;
3 -
’ @ Print row sum

Prof. Jyotiprakash Mishra i) January 16, 2026

Program 7: Sum of Each Column

. #include <stdio.h> Output:
] int main() { K
3 int arr[31[3]1 = {{1,2,3}, Marsisl
! {4,5,6}, 433
5 {7,8,9}}; sBE
) int i, j, sum; 789
4 printf ("Matrix:\n");
] for (i = 0; i < 3; i++) { Column sums:
) for (j = 0; j < 3; j++) { Col 0: 12
) printf ("%d ", arr[il[jl); Col 1: 15
] Col 2: 18
) printf ("\n");
3
3 printf ("\nColumn sums:\n"); Logic:
> for (j = 0; j < 3; j++) {
) sum = 0;
, T il 0t <3 e < @ For each column
3 sum += arr[il[j]; .
) @ Initialize sum to 0
) printf ("Col %d: %d\n", j, sum);
-y o Add all row elements
3 return O;
3
' @ Note: loops swapped vs rows

Prof. Jyotiprakash Mishra i) January 16, 2026

Program 8: Maximum in

for (j = 1; j < 45 j++) {
if (arr[il[j] > max) {
max = arr[i][j];

Assume first element is max
b

°
o Compare with rest

printf ("Row %d: %d\n", i, max);

°

Update if larger found

return O;

| #include <stdio.h> 0utput:
] int main() {

3 int arr[3][4] = {{3,7,2,9}, Matrix:

1 {5,1,8,4}, 3729

5 {6,2,7,3}}; 5884

> int i, j, max; 6273

/ printf ("Matrix:\n");

3 for (i = 0; i < 3; i++) { Max in each row:
) for (j = 0; j < 45 j++) { Loz ©8 ©

) printf("%d ", arr[i][j1); Row 1: 8

1 Row 2: 7

] printf ("\n");

3 } .

3 printf ("\nMax in each row:\n"); Loglc:

> for (i = 0; i < 3; i++) {

; max arr[i][0]; Py For each row
3

)

)

|

)

3

1

>

Prof. Jyotiprakash Mishra i) January 16, 2026

Program 9: Matrix Addition

#include <stdio.h>

int main() {
int al2][2]
int b[2][2]
int sum[2][2];
int i, j;

{{1,2}, {3,4}};
{{5,6}, {7,8}};

for (i = 0; i < 25 i++) {
for (j = 0; j < 2; j++) {
sum[il[j] = alil[j] + b[il[j];

}
¥
printf ("Matrix A:\n");
for (i = 0; i < 2; i++) {
for (j = 0; j < 25 j++) {
printf("%d ", alil[jl);

printf ("\n");
}
printf ("\nMatrix B:\n");
for (i = 0; i < 25 i++) {
for (j = 0; j < 25 j++) {
printf("%d ", bl[il[jl);

printf ("\n");
printf ("\nA + B:\n");
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
printf ("%d ", sum[il[jl1);

printf ("\n");

Note:
@ Element-wise addition
@ Same dimensions required

o sum[i] [j1 = alil[j] +
b[i] [j]

Prof. Jyotiprakash Mishra

January 16, 2026

Program 10: Matrix Subtraction

. #include <stdio.h> Output:

) int main() {

3 int al[2][3] = {{9,8,7}, {6,5,4}}; & = Be

1 int b[2]1[3] = {{1,2,3}, {4,5,6}}; 2064

) int diff [2][3]; 20 4

] int i, j;

/ for (i = 0; i < 2 1++){

3 for (j = 0; j < 3; j++) { Note:

) diff[i1[j] = alil[j] - b[il1[j];

S @ Element-wise subtraction
) printf ("A - B:\n");
3 for (i = 0; i < 2; i++) { o diff[i][j] = alil[j] -
L for (j = 0; j < 3; j++) { . .

5 printf("%d ", diff[il[j1); b[l] [J]

> b

; , PRt Can; @ Can produce negatives

) return O;

)}

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026

Program 11: Matrix Multiplication

#include <stdio.h> OUtPUt:
int main() {
int a[2][2] = {{1,2}, {3,4}}; A x B:
int b[2][2] = {{5,6}, {7,8}}; 75 b
int prod[2]1[2] = {0}; = &
int i, j, k;
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j+) { Formula:
for (k = 0; k < 2; k++) {
prod[i1[j] += alillk1*b[kI[j]; o prod[l] [J] =
. sum(al[i] [k]*b[k] [j1)
printf ("A x B:\n"); H
im0 12 e o @ Triple nested loop
for (j = 0; j < 25 j++) {
N printf("%d ", prod[il[j1); (] Resu|t[0][0] = 1*5 + 2*7 = 19
, printt(an; o Result[0][1] = 1*6 + 2*8 = 22

return O;

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026

Program 12: Matrix Transpose

#include <stdio.h>
int main() {
int arr[3][2] =
int trans [2]1[3];
int i, j;
printf ("Original (3x2):\n");
for (i = 0; i < 3; i++) {

{{1,2}, {3,4},

for (j = 0; j < 25 j++) {
printf ("%d ", arr[il[jl);
s
printf ("\n");
}
for (i = 0; i < 3; i++) {
for (j = 0; j < 25 j++) {
trans [j1[i] = arr[il[j];

¥
}

printf ("\nTranspose (2x3):\n");

for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {

printf ("%d ", trans[il[jl1);

printf ("\n");

return O;

Prof. Jyotiprakash Mishra

Output:

Original (3x2):
12
3 4
5 6

{5,6}};

Transpose (2x3):
1365
246

Logic:
@ Swap rows and columns
o trans[j][i] = arr[i] [j]
@ Dimensions reversed

@ 3x2 becomes 2x3

C Programming: 2D Arrays January 16, 2026

Program 13: Sum of Diagonals

e e

#include <stdio.h>
int main() {
int arr[3]1[3] = {{1,2,3},

{4,5,6},
{7,8,9}};

int i, j;

int main_diag = 0, anti_diag =

printf ("Matrix:\n");
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
printf ("%d ", arr[il[jl);

printf ("\n");
}
for (i = 0; i < 35 i++) {
main_diag += arr[i][il;
anti_diag += arr[i][3-1-i];
¥
printf ("\nMain diagonal: %d\n",
main_diag);
printf ("Anti diagonal: %d\n",
anti_diag);
return O;

yotiprakash Mishra

Output:

Matrix:
123
4 56
789

Main diagonal: 15
Anti diagonal: 15

Note:
@ Main diagonal: i == j
o Elements: 1,5, 9

@ Anti diagonal: i 4+ j ==

o Elements: 3,5, 7

January 16, 2026

n-1

Program 14: ldentity Matrix

. #include <stdio.h> Output:

] int main() { . .

3 int identity [41[4] = {0}; 4x4 Identity Matrix:

' int i, j; 1000

> for (i = 0; i < 4; i++) { 0100

> identity [i]1[i] = 1; 00 a0

, } 0001

3 printf ("4x4 Identity Matrix:\n");

) for (i = 0; i < 4; i++) {

) for (j = 0; j < 4; j++) { Note:

| printf ("%d ", identity[il[jl1);

, e

: peines (at); o Initialize all to 0

b } .

5 return 0; @ Set diagonal to 1

)}
@ identity[i][i] = 1
@ Used in matrix math

Prof. Jyotiprakash Mishra i) January 16, 2026

e e

Program 15: Search in 2D Array

#include <stdio.h> Output:
int main() {
int arr[31[4] = {{10,20,30,40}, ‘Ff’“ﬂd 36 at [1][2]

{15,25,35,45},
{12,22,32,42}};

int target = 35; LOgiC:

int found = 0;

int i, j;

s e o @ Nested loops to check all

for (j = 0; j < 4; j++) {

if (arr[i17j] == target) { @ Compare each element
printf ("Found %d at [%d][%d]\n", .
target, i, j); @ Break from inner loop
found = 1;
break; @ Break from outer if found

if (found) break;
¥
if (!found) {

printf ("%d not found\n", target);
¥

return O;

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026

e e

Program 16: Print Border Elements

#include <stdio.h>
int main() {
int arr([4][4] = {{1,2,3,4},
{5,6,7,8%},
{9,10,11,12},
{13,14,15,163}};
int i, j;
printf ("Matrix:\n");
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
printf ("%2d ", arr[i][j1);

printf ("\n");
printf ("\nBorder elements:\n");

for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {

if (i==0 || i==3 || j==0 || j==3) {
printf ("%2d ", arr[il[jl1);

} else {
printf (" ")

}

}
printf ("\n");

return O;

yotiprakash Mishra

Output:

Matrix:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Border elements:
1 2 3 4

5 8

9 12

13 14 15 16

Logic:
o First/last row

e First/last column

January 16, 2026

Program 17: Spiral Print

| #include <stdio.h> Output:

>’ int main() {

3 int arr[31[3] = {{1,2,3}, LEErsElesE

1 {4,5,6}, &3 d

5 {7.,8,9}}; sBE

) int top=0, bottom=2, left=0, right=2; 789

/ int 1i;

3 printf ("Matrix:\n"); Spiral: 1 2 3 6 987 45

) for (i = 0; i < 3; i++) {

) printf ("%d %d %d\n", .

! arr[i]1[0], arr[i][1], arr[il[2]); Loglc:

J ¥

3 printf ("\nSpiral: "); H . . .
' while (top <= bottom && left <= right) { ° nght L Down L Left L Up
> for (i=left; i<=right; i++) . .

) printf("%d ", arr[topl[il); 4 Shrlnk boundarles
/ top++;

3 for (i=top; i<=bottom; i++) o Continue until done
) printf("%d ", arr[il[right]);

) right --;

] if (top <= bottom) {

] for (i=right; i>=left; i--)

3 printf ("%d ", arr[bottom][il);

b bottom--;

>

> if (left <= right) {

/ for (i=bottom; i>=top; i--)

3 printf("%d ", arr[il[leftl);

) left++;

)

|

)

January 16, 2026

Program 18: Check Symmetric Matrix

#include <stdio.h> Output:
int main() {
int arr[3][3] = {{1,2,3}, Matrix:
{2,4,5}, 123
{3,5,6}}; a4l
int i, j, symmetric = 1; 356
printf ("Matrix:\n");
for (i = 0; i < 3; i++) { Symmetric

for (j = 0; j < 3; j++) {
printf ("%d ", arr[il[j1);
Note:

printf ("\n");
e Symmetric: arr[i] [j] ==

for (i = 0; i < 3; i++) {

for (j = 0; j < 35 j++) { . .
if (arr(il[j] !'= arr[j1[i]) { arr [J] [1]
tri = 0; .
break; @ Equal to its transpose
s
¥ @ Must be square matrix

if (!symmetric) break;

printf ("\n%s\n",
symmetric ? "Symmetric"
"Not symmetric");
return O;

e e

Prof. Jyotiprakash Mishra i) January 16, 2026

B e e

Program 19: Upper Triangular Matrix

#include <stdio.

int main() {
int arr [4][4]
int i, j, val
for (i = 0; i
for (j = i;
arr[i]1[j]
s
¥
printf ("Upper
for (i = 0; i
for (j = 0;

printf ("%2d ", arr[il[j1);

e A

Triangular:\n");

<
j

printf ("\n");

return O;

{0};

1;

4; i++) {
< 4; j++) o
val++;

4; i++) {
< 45 g+ {

Prof. Jyotiprakash Mishra

Output:

Upper Triangular:
1 2 3 4
6 7

8 9
0 10

o oo

5
0
0 1

Note:

@ Elements above diagonal

@ j>=1

@ Below diagonal: all zeros

January 16, 2026

B e e

Program 20: Lower Triangular Matrix

#include <stdio.

int main() {
int arr [4][4]
int i, j, val
for (i = 0; i
for (j = 0;
arr[i]1[j]
s
¥
printf ("Lower
for (i = 0; i
for (j = 0;

h>

= {0};

= 1;

< 4; i++) {
jo<=i; j++) {

val++;

Triangular:\n");
< 4; i++) {
j o< 4; j+e) o

printf ("%2d ", arr[il[j1);

printf ("\n");

return O;

Prof. Jyotiprakash Mishra

Output:

Lower Triangular:
1 0 0 O

o o

6 0

9 10

~N e N

3
5
8

Note:

@ Elements below diagonal

@ j <=1

@ Above diagonal: all zeros

January 16, 2026

2D Arrays - Summary

Key Points:
Array of arrays: arr[rows] [cols]
Zero-based indexing for both dimensions
Row-major memory layout
Nested loops for traversal

Initialization: row-by-row or sequential

o
o
o
o
o
@ Matrix operations: add, subtract, multiply, transpose
@ Row operations: sum, max, min per row

@ Column operations: sum, max, min per column

@ Diagonal operations: main and anti diagonal

o

Search requires nested loops

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026

Matrix Operations Reference

Operation Formula/Note

Addition clil[j] = alil[j] + blil([j]
Subtraction clil[j]1 = alil[j1 - blil[j]
Multiplication | c[i][j] = sum(ali] [k] * b[k][j1)
Transpose trans[j][i] = arr[i] [j]

Main Diagonal | Elements where i == j

Anti Diagonal | Elements where i + j == n-1
Symmetric arr[i] [j] == arr[j][i]

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026 26 /29

Best Practices

Always initialize 2D arrays

Use constants for dimensions

Check bounds carefully (two dimensions!)

Outer loop = rows, inner loop = columns (usually)
Pass dimensions when using functions

Visualize the matrix structure

Use meaningful names - not just arr

Format output for readability

Comment complex traversal patterns

000000 0CO0CO

Test with small matrices first

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026

Common Mistakes

@ Index confusion: arr[j] [i] instead of arr[i] [j]

@ Wrong loop bounds: Using rows for columns or vice versa

© Out of bounds: Accessing arr[rows] [cols]

© Dimension mismatch: Adding matrices of different sizes

© Uninitialized arrays: Reading before writing

© Wrong multiplication: Element-wise instead of matrix multiply
@ Forgetting break: In nested search loops

© Swap confusion: In transpose with same array

© Diagonal mistakes: Off-by-one in anti-diagonal

@ Memory layout: Assuming column-major instead of row-major

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026

Practice Exercises

Try these programs:

Rotate matrix 90 degrees clockwise

Check if matrix is diagonal

Find saddle point (min in row, max in column)
Print matrix in zigzag pattern

Interchange rows and columns

Check if two matrices are equal

Find determinant of 2x2 matrix

Convert matrix to 1D array

Find sum of all elements

000000 0CO0COC

Check if matrix is sparse (mostly zeros)

Prof. Jyotiprakash Mishra C Programming: 2D Arrays January 16, 2026

	Introduction to 2D Arrays
	Declaration and Initialization
	Input and Output
	Row and Column Operations
	Matrix Operations
	Diagonal Operations
	Searching and Pattern
	Special Matrices
	Summary

