C Programming: Strings

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

January 16, 2026

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

Topics Covered

@ Introduction to Strings
© String Basics

© String Input and Output
@ String Library Functions
© String Manipulation

@ String Operations

@ Common Mistakes

@ Summary

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

What are Strings?

Sequence of characters

Stored as array of characters

Terminated by null character \0

Null terminator marks end of string

Size = number of characters + 1 (for \0)

String Representation:
@ String literal: "Hello"
e Stored as: *H’, ’e’, ’1’, ’1’, ’0’, ’\0O’
@ Array notation: char str[6]
@ Last element must be \0

Important:
@ Always reserve space for null terminator
@ String functions rely on \0
@ Missing \0 causes undefined behavior

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

String Declaration and Initialization

Declaration:

char strlsizel;
char str[] = "Hello";
char *str = "Hello";

Initialization Methods:

char str1[6] = "Hello"; // Auto adds \O
char str2[] = "Hello"; // Size = 6
char str3[6] = {’H’,’e’,’1’,’1’,%0°,°\0°};

char str4[10] = "Hi"; // Rest = \0
Important:

@ Size must accommodate \0
@ "Hello" needs 6 bytes (5 + 1)
e Partial init fills rest with \0

Prof. Jyotiprakash Mishra C Programming: Strings

January 16, 2026

ring Declaration

#include <stdio.h> Output:
int main() {
char stri[6] = "Hello"; strl: Hello
char str2[] = "World"; str2: W(?rld
char str3[10] = "Hi"; str3: Hi
int i;
printf ("stri: %s\n", stri); strl chars: He 1 1 o \O
printf ("str2: %s\n", str2);
printf ("str3: %s\n\n", str3); .
printf ("strl chars: "); Explanatlon:
for (i = 0; i < 6; i++) {
if (strili] == >\0’) { 0 1 H
SIS @ %s prints until \O
} else { .« . .
printf ("%ec ", strilil); @ strl has explicit size 6
s
¥ @ str2 size inferred as 6
printf ("\n");
0;
return @ str3 has extra null chars

Prof. Jyotiprakash Mishra

C Programming:

Strings

January 16, 2026

e

Program 2: Character-by-Character Init

#include <stdio.h>
int main() {

char str[6] = {’H’,’e’,’1’,°1°,%07,°\0};

int i;
printf ("String: %s\n\n", str);
printf ("Character array:\n");

for (i = 0; i < 6; i++) {
printf ("str[%d] = ", i);
if (strl[il == °\0’) {
printf ("’\\0’ (null)\n");
} else {
printf ("’%c’ (ASCII %d)\n",
str[il, str[il);
i
}
return O;

Prof. Jyotiprakash Mishra

Output:

String: Hello

Character array:

str[0] = *H’ (ASCII 72)
str[1] = ’e’ (ASCII 101)
str[2] = ’1’ (ASCII 108)
str[3] = ’1’ (ASCII 108)
str[4] = ’o’ (ASCII 111)
str[6] = °\0’ (null)
Note:

@ Shows ASCII values

@ Explicit null terminator

C Programming: Strings January 16, 2026

Program 3: String Input with scanf

#include <stdio.h>
int main() {
char name [20];

char input[] = "John";

int 1i;

printf ("Enter name: ");

for (i = 0; dinput[i] !'= >\0’; i++) {
name [i] = input[il;

}

name [i] = ’\0’;

printf ("%s\n", input);

printf ("\nName entered: %s\n", name);

printf ("Length: %d\n", i);
return O;

Prof. Jyotiprakash Mishra

Output:

Enter name: John

Name entered: John
Length: 4

Note:

@ scanf ("Ys", name) reads
until space

@ No & for string name
@ Stops at whitespace
e Automatically adds \0

January 16, 2026

ring Input with gets (unsafe)

| #include <stdio.h> Output:

) int main() {

3 char line[50]; Enter line: Hello World

b char input[] = "Hello World";

5 int i Line: Hello World

> printf ("Enter line: "); X

7 for (i = 0; imput[i] != ’\0’; i++) { Note: gets() is unsafe!

3 line[i] = input[il; Use fgets() instead.

) }

) line[i]l = ’\0’; .

] printf ("%s\n", input); Warn|ng;

) printf ("\nLine: %s\n", line);

3 printf ("\nNote: gets() is unsafe!\n"); H

b printf ("Use fgets() instead.\n"); ° gets() IS deprecated
) return O; .
) No bounds checking

°
@ Can cause buffer overflow
°

Use fgets () instead

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

Program 5: String Input with fgets

#include <stdio.h>
#include <string.h>
int main() {

char line[50] = "Hello World\n";
int len;
printf ("Enter line: %s", line);
len = strlen(line);
if (line[len-1] == ’\n’) {
line[len-1] = ’\0’;
len--3;
¥

printf ("\nLine: %s\n", line);
printf ("Length: %d\n", len);
printf ("\nfgets () is safe!\n");
return O;

Prof. Jyotiprakash Mishra

Output:

Enter line: Hello World

Line: Hello World
Length: 11

fgets () is safe!

Note:
o fgets(str,

size, stdin)

@ Reads whole line with spaces

Includes newline \n

°
@ Remove \n manually
@ Safe - bounds checked

January 16, 2026

Program 6: strlen - S

. #include <stdio.h> Output:

4 #include <string.h>

3 int main() { gewils DHOLIOT

b char stri[] = "Hello"; Length: 5

> char str2[] = "Programming";

) char str3[] = ""; str2: "Programming"
/ printf ("stri: \"%s\"\n", stri); Length: 11

3 printf ("Length: %lu\n\n",

) strlen(stri1)); geses B

) printf ("str2: \"%s\"\n", str2); Length: 0

] printf ("Length: %lu\n\n",

) strlen(str2));

3 printf ("str3: \"%s\"\n", str3); Note:

+ printf ("Length: %lu\n",

) strlen(strd)); e Counts chars until \0
) return O;

o}

@ Does not include \0
@ Empty string has length 0
o

Returns size_t type

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

Program 7: strcpy - String Copy

. #include <stdio.h> Output:

) #include <string.h>

3 int main() { Before copy:

4 char src[] = "Hello"; Source: Hello

> char dest [20];

) printf ("Before copy:\n"); After copy:

4 printf ("Source: ¥%s\n", src); Source: Hello

3 strcpy (dest, src); Destination: Hello
) printf ("\nAfter copy:\n");

) printf ("Source: %s\n", src); Note: dest must be
| printf ("Destination: %s\n", dest); large enough!

) printf ("\nNote: dest must be\n");

3 printf ("large enough!\n");

b return O; Note:

.

@ Copies src to dest

@ Includes \0

@ dest must have space
°

No bounds checking

Prof. Jyotiprakash Mishra C Programmi Strings January 16, 2

Program 8: strcat - String Concatenation

. #include <stdio.h> Output:

’ #include <string.h>

3 int main() { el

4 char str1[20] = "Hello"; str2: " World"

5 char str2[] = " World";

5 printf ("stri: \"%s\"\n", stri); After strcat(strl, str2):
/ printf ("str2: \"%s\"\n\n", str2); strl: "Hello World"

3 strcat (strl, str2); str2: " World"

) printf ("After strcat(strl, str2):\n");

) printf ("stri: \"%s\"\n", stril);

] printf ("str2: \"%s\"\n", str2); Note:

4 return O;

3 @ Appends str2 to strl

@ strl must have space
@ str2 unchanged
@ Result in strl

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

Program 9: strcmp - String Comparison

| #include <stdio.h> Output:

) #include <string.h>

3 int main() { strcmp ("Apple", "Apple") = 0

. char stri[] = "Apple"; strcmp ("Apple", "Banana") = -1

3 char str2[] = "Apple"; strcmp ("Banana", "Apple") = 1

> char str3[] = "Banana';

/ int result;

3 result = strcmp(strl, str2); Return Values:

) printf ("strcmp (\"%s\", \"%s\") = %d\n",

) strl, str2, result); . H

| result = strcmp(strl, str3); b 0 Strlngs are equal

) printf ("strcmp (\"%s\", \"%s\") = %d\n", . .
3 stri, str3, result); e <0: strl <str2 (lexicographic)
4 result = strcmp(str3, stril);

) printf ("stremp (\"%s\", \"%s\") = %d\n", o >O strl >Str2

> str3, strl, result);

L, et O e Compares ASCII values

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 13 /30

Program 10: strchr - Find Character

#include <stdio.h>

#include <string.h>

int main() {
char str[] = "Hello World";
char *ptr;
printf ("String: %s\n\n", str);
ptr = strchr(str, ’0’);
if (ptr != NULL) {

printf ("First ’o’ found at: %1d\n",

ptr - str);
printf ("Substring: %s\n", ptr);

ptr = strchr(str, ’x’);
if (ptr == NULL) {
printf ("\n’x’ not found\n");

return O;

Prof. Jyotiprakash Mishra

Output:

String: Hello World

First ’o’ found at: 4
Substring: o World

’x’ not found

C Programming: Strings

Note:
@ Returns pointer to first match
@ NULL if not found
@ Can calculate index
o

Pointer arithmetic

January 16, 2026 14 /30

Program 11: strstr - Find Substring

. #include <stdio.h> Output:

’ #include <string.h>

3 int main() { String: Hello World

4 char str[] = "Hello World";

> char *ptr; ’World’ found at: 6

) printf ("String: %s\n\n", str); Substring: World

4 ptr = strstr(str, "World");

3 if (ptr != NULL) { T Zhgpuol e nad

) printf ("’World’ found at: %1ld\n",

) ptr - str);

] printf ("Substring: %s\n", ptr); Note:

]

3 ptr = strstr(str, "xyz"); 1 1 I 1
N e Iy @ Finds substring in string
> printf ("\n’xyz’ not found\n"); .

) Returns pointer to match
/ return O;

3

[+
} e NULL if not found
o

Case-sensitive

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

B e e

Program 12: Manual St

#include <stdio.h>

int main() {
char str[] = "Programming";
int length = 0;

int 1i;

for (i = 0; strl[il != °\0’; i++) {
length++;

}

printf ("String: %s\n", str);

printf ("Length: %d\n", length);

printf ("\nCounting manually:\n");
for (i = 0; str[i] !'= ’\0’; i++) {
printf ("str[%d] = ’%c’\n", i, st

return O;

yotiprakash Mishra

ring Length

Output:
String: Programming
Length: 11
Counting manually:
str[0] = °P’
str[1] = ’r’
str[2] = 2o’
str[3] = ’g’
str[4] = ’r’
str[6] = ’a’
r[il); str[6] = ’m’
str[7] = 'm’
str[8] = ’i’
str[9] = ’n’
str[10] = ’g’

C Programming: Strings

January 16, 2026

Program 13: Manual String Copy

| #include <stdio.h> Output:

4 int main() {

3 char src[] = "Hello"; Source: Hello

] char dest [20]; Destination: Hello

> int i;

5 printf ("Source: %s\n", src); Manual copy complete!
/ for (i = 0; srcl[i] != ’\0’; i++) {

3 dest[i] = src[il; .

o Logic:

) dest[i] = ’\0’;

| printf ("Destination: %s\n\n", dest);

4 printf ("Manual copy complete!\n"); ° Copy Char by Char
3 return O; .
o Loop until \0

°
e Don't forget to add \0
°

Same as strcpy

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

Program 14: Reverse a String

| #include <stdio.h> Output:

’ #include <string.h>

3 int main() { Original: Hello

1 char str[] = "Hello"; Reversed: olleH

5 int len = strlen(str);

) int i; .

/ char temp; L0g|c:

3 printf ("Original: %s\n", str);

) for (i = 0; i < len/2; i++) { H

) tenn = sirlins @ Swap first and last
| str[i] = str[len-1-i];

z strllen-1-i] = temp; @ Move toward center
3 }

4 printf ("Reversed: %s\n", str); o Loop Ien/2 timES

) return O;

! @ In-place reversal

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

e e e e e e T e e e e e T e e T e e e e e e e T

: Check Palindrome

#include <stdio.h>

Output:

#include <string.h>
int main() {
char stri[] = "madam";

Palindrome
Not palindrome

madam:
hello:

char str2[] = "hello";
int len, i, palindrome;
len = strlen(strl);
palindrome = 1;
for (i = 0; i < len/2; i++) {
if (str1[i]l != stri[len-1-il) {
palindrome = 0;
break;
}
}
printf ("%s: %s\n",
palindrome ?

stril,
"Palindrome"
"Not palindrome");
len = strlen(str2);
palindrome = 1;
for (i = 0; i < len/2; i++) {
if (str2[i] != str2[len-1-i]) {
palindrome = 0;
break;
¥
}
printf ("%s: %s\n",
palindrome 7?7

str2,

"Palindrome"

"Not palindrome");
return O;

Prof. Jyotiprakash Mishra

C Programmi

Logic:
@ Compare first and last
@ Move toward center

o If any mismatch, not
palindrome

Check half the string

Strings January 16, 2

e e

Program 16: Count Vowels and Consonants

#include <stdio.h>

#include <string.h>

int main() {
char str[]
int vowels
int i;
char ch;

"Hello World";
0, consonants = 0;

printf ("String: %s\n\n", str);

for (i = 0; str[i] !=
ch = strlil;
if (ch >= ’A’ && ch
ch = ch + 32;

¥

if (ch == ’a’ || ch
ch == ’i’ || ch
ch == ’u’) {

vowels++;

Output:

String: Hello World

Vowels: 3
Consonants: 7

N0 i) { Logic:

<A @ Convert to lowercase
T @ Check if vowel

== 20’ ||

} else if (ch >= ’a’ && ch <=

consonants++;
}
}

printf ("Vowels: %d\n", vowels);

printf ("Consonants: %d\n",

return O;

o Else check if letter

=t @ Ignore spaces/punctuation

consonants) ;

Prof. Jyotiprakash Mishra

C Programming: Strings January 16, 2026

20 /30

e

Program 17: Convert to Uppercase

#include <stdio.h> Output:
int main() {
char str[] = "Hello World"; Original: Hello World
int i; Uppercase: HELLO WORLD
printf ("Original: %s\n", str);
for (i = 0; str[i] !'= ’\0’; i++) { .
if (str[i] >= ’a’ && str[i] <= ’z’) { Loglc:
str[i] = str[i]l - 32;
7 @ Check if lowercase letter
rintf ("Uppercase: ¥%s\n", str);
Eeturn 0; o Subtract 32 from ASCII

@ 'a’ =97, 'A’ =65
o Difference = 32

Prof. Jyotiprakash Mishra i i January 16, 2026

Program 18: Convert to Lowercase

#include <stdio.h> Output:
int main() {
char str[] = "HELLO WORLD"; e R =L LOQWORED
int i; Lowercase: hello world
printf ("Original: %s\n", str);
for (i = 0; strl[il != °\0’; i++) { .
if (str[il >= A’ && str[il] <= °Z°) { Logic:

str[i] = str[i] + 32;

L7 @ Check if uppercase letter
Poturn o;etee et me Add 32 to ASCII

e e

AT+ 32="a

Simple conversion

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 22/30

Program 19: Count Words in String

#include <stdio.h>
int main() {
char str[] = "Hello World from C";
int i, words = 0;
int inWord = 0;
printf ("String: %s\n\n", str);

for (i = 0; str[i] !'= *\0’; i++) {
if (strl[i] == > > || str[i] == >\t~
str[i] == ’\n’) {

inWord = O0;

} else if (inWord == 0) {
inWord = 1;
words++;

s

printf ("Word count: %d\n", words);
return O;

Prof. Jyotiprakash Mishra

Output:

String: Hello World from C

Word count: 4

Logic:
@ Track if inside word
@ Space/tab ends word
@ Non-space starts new word

@ Increment on word start

January 16, 2026

Program 20: Remove Spaces

| #include <stdio.h> Output:

> int main() { 8 =]

3 char str[] = "Hello World"; Original: "Hello World"

1 int i, j = 0; No spaces: "HelloWorld"

> printf ("Original: \"%s\"\n", str);

> for (i = 0; strl[il != °\0’; i++) { .

/ if (strlil '= > *) { LOgIC:

3 str[jl = strlil;

i MR @ Two indices: i and j
| } . . .

) str[j]l = ’\0’; @ | scans entire Strlng
3 printf ("No spaces: \"%s\"\n", str); X) L
d N return 0; C | tracks write pOSlthn
>

@ Skip spaces, copy others

Prof. Jyotiprakash Mishra i i January 16, 2026

B e e

#include <stdio.h>

int main() {
char stri[6] = "Hello";
char str2[6];
printf("Mistake 1:\n");
printf ("str2 = strl is WRONG!\n");
printf ("Use strcpy instead\n\n");
printf ("Mistake 2:\n");

printf ("if (stri==str2) is WRONG!\n");

printf ("Use strcmp instead\n\n");
printf ("Mistake 3:\n");

printf ("Forgetting \\0 causes\n");
printf ("undefined behavior\n\n");
printf ("Mistake 4:\n");

printf ("Buffer overflow if\n");
printf ("dest too small\n");

return O;

otiprakash Mishra

Program 21: Common String Mistakes

Output:

Mistake 1:
str2 = strl is WRONG!
Use strcpy instead

Mistake 2:
if (stri==str2) is WRONG!
Use strcmp instead

Mistake 3:
Forgetting \0 causes
undefined behavior

Mistake 4:
Buffer overflow if
dest too small

January 16, 2026

Strings - Summary

Key Points:
@ String = character array + \0
@ Always reserve space for null terminator
%s for string 1/0
Cannot assign strings with =
Cannot compare with ==
Use string.h library functions
strlen(), strcpy(), strcat(), strcmp()
fgets () safer than gets()

Manual operations use loops

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

String Library Functions

Function Purpose
strlen(s) Length of string
strcpy(dest, src) | Copy string
strcat(dest, src) | Concatenate strings

strcmp(sl, s2) Compare strings
strchr(s, c) Find character
strstr(sl, s2) Find substring
strupr(s) Convert to uppercase
strlwr(s) Convert to lowercase

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 27 /30

Best Practices

© Always null-terminate strings

Check buffer sizes before copying

Use fgets() instead of gets()

Use strncpy() instead of strcpy() for safety
Validate input length

Initialize arrays before use

Use string.h functions when available

Avoid buffer overflow - check bounds

©O00000O0O0

Remember \0 when calculating size
@ Handle empty strings (length 0)

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

Common Mistakes

Forgetting \0: Causes undefined behavior
Buffer overflow: Destination too small

Using = for assignment: Use strcpy()

Using == for comparison: Use strcmp()
Off-by-one errors: Size vs length

Using gets(): Unsafe, use fgets()

Not checking NULL: After strchr, strstr
Modifying string literals: Undefined behavior

©00000O0CO0

@ scanf with spaces: Use fgets() for lines

@ Not removing newline: From fgets() input

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

Practice Exercises

Try these programs:
@ Find frequency of each character
@ Remove duplicate characters
© Check if two strings are anagrams
© Find longest word in sentence
© Replace all occurrences of character
@ Trim leading and trailing spaces
@ Check if string contains only digits
@ Convert string to integer (atoi)
© Split string by delimiter
@ Find all permutations of string

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026

	Introduction to Strings
	String Basics
	String Input and Output
	String Library Functions
	String Manipulation
	String Operations
	Common Mistakes
	Summary

