
C Programming: Strings

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

January 16, 2026

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 1 / 30

Topics Covered

1 Introduction to Strings

2 String Basics

3 String Input and Output

4 String Library Functions

5 String Manipulation

6 String Operations

7 Common Mistakes

8 Summary

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 2 / 30

What are Strings?

Sequence of characters

Stored as array of characters

Terminated by null character \0
Null terminator marks end of string

Size = number of characters + 1 (for \0)

String Representation:

String literal: "Hello"

Stored as: ’H’, ’e’, ’l’, ’l’, ’o’, ’\0’
Array notation: char str[6]

Last element must be \0

Important:

Always reserve space for null terminator

String functions rely on \0
Missing \0 causes undefined behavior

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 3 / 30

String Declaration and Initialization

Declaration:
1 char str[size];

2 char str[] = "Hello";

3 char *str = "Hello";

Initialization Methods:
1 char str1 [6] = "Hello"; // Auto adds \0

2 char str2[] = "Hello"; // Size = 6

3 char str3 [6] = {’H’,’e’,’l’,’l’,’o’,’\0’};

4 char str4 [10] = "Hi"; // Rest = \0

Important:

Size must accommodate \0
"Hello" needs 6 bytes (5 + 1)

Partial init fills rest with \0

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 4 / 30

Program 1: String Declaration

1 #include <stdio.h>

2 int main() {

3 char str1 [6] = "Hello";

4 char str2[] = "World";

5 char str3 [10] = "Hi";

6 int i;

7 printf("str1: %s\n", str1);

8 printf("str2: %s\n", str2);

9 printf("str3: %s\n\n", str3);

10 printf("str1 chars: ");

11 for (i = 0; i < 6; i++) {

12 if (str1[i] == ’\0’) {

13 printf("\\0 ");

14 } else {

15 printf("%c ", str1[i]);

16 }

17 }

18 printf("\n");

19 return 0;

20 }

Output:
str1: Hello

str2: World

str3: Hi

str1 chars: H e l l o \0

Explanation:

%s prints until \0
str1 has explicit size 6

str2 size inferred as 6

str3 has extra null chars

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 5 / 30

Program 2: Character-by-Character Init

1 #include <stdio.h>

2 int main() {

3 char str[6] = {’H’,’e’,’l’,’l’,’o’,’\0’};

4 int i;

5 printf("String: %s\n\n", str);

6 printf("Character array :\n");

7 for (i = 0; i < 6; i++) {

8 printf("str[%d] = ", i);

9 if (str[i] == ’\0’) {

10 printf(" ’\\0’ (null)\n");

11 } else {

12 printf(" ’%c’ (ASCII %d)\n",

13 str[i], str[i]);

14 }

15 }

16 return 0;

17 }

Output:
String: Hello

Character array:

str [0] = ’H’ (ASCII 72)

str [1] = ’e’ (ASCII 101)

str [2] = ’l’ (ASCII 108)

str [3] = ’l’ (ASCII 108)

str [4] = ’o’ (ASCII 111)

str [5] = ’\0’ (null)

Note:

Shows ASCII values

Explicit null terminator

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 6 / 30

Program 3: String Input with scanf

1 #include <stdio.h>

2 int main() {

3 char name [20];

4 char input[] = "John";

5 int i;

6 printf("Enter name: ");

7 for (i = 0; input[i] != ’\0’; i++) {

8 name[i] = input[i];

9 }

10 name[i] = ’\0’;

11 printf("%s\n", input);

12 printf("\nName entered: %s\n", name);

13 printf("Length: %d\n", i);

14 return 0;

15 }

Output:
Enter name: John

Name entered: John

Length: 4

Note:

scanf("%s", name) reads
until space

No & for string name

Stops at whitespace

Automatically adds \0

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 7 / 30

Program 4: String Input with gets (unsafe)

1 #include <stdio.h>

2 int main() {

3 char line [50];

4 char input[] = "Hello World";

5 int i;

6 printf("Enter line: ");

7 for (i = 0; input[i] != ’\0’; i++) {

8 line[i] = input[i];

9 }

10 line[i] = ’\0’;

11 printf("%s\n", input);

12 printf("\nLine: %s\n", line);

13 printf("\nNote: gets() is unsafe !\n");

14 printf("Use fgets() instead .\n");

15 return 0;

16 }

Output:
Enter line: Hello World

Line: Hello World

Note: gets() is unsafe!

Use fgets() instead.

Warning:

gets() is deprecated

No bounds checking

Can cause buffer overflow

Use fgets() instead

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 8 / 30

Program 5: String Input with fgets

1 #include <stdio.h>

2 #include <string.h>

3 int main() {

4 char line [50] = "Hello World\n";

5 int len;

6 printf("Enter line: %s", line);

7 len = strlen(line);

8 if (line[len -1] == ’\n’) {

9 line[len -1] = ’\0’;

10 len --;

11 }

12 printf("\nLine: %s\n", line);

13 printf("Length: %d\n", len);

14 printf("\nfgets () is safe!\n");

15 return 0;

16 }

Output:
Enter line: Hello World

Line: Hello World

Length: 11

fgets() is safe!

Note:

fgets(str, size, stdin)

Reads whole line with spaces

Includes newline \n
Remove \n manually

Safe - bounds checked

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 9 / 30

Program 6: strlen - String Length

1 #include <stdio.h>

2 #include <string.h>

3 int main() {

4 char str1[] = "Hello";

5 char str2[] = "Programming";

6 char str3[] = "";

7 printf("str1: \"%s\"\n", str1);

8 printf("Length: %lu\n\n",

9 strlen(str1));

10 printf("str2: \"%s\"\n", str2);

11 printf("Length: %lu\n\n",

12 strlen(str2));

13 printf("str3: \"%s\"\n", str3);

14 printf("Length: %lu\n",

15 strlen(str3));

16 return 0;

17 }

Output:
str1: "Hello"

Length: 5

str2: "Programming"

Length: 11

str3: ""

Length: 0

Note:

Counts chars until \0
Does not include \0
Empty string has length 0

Returns size t type

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 10 / 30

Program 7: strcpy - String Copy

1 #include <stdio.h>

2 #include <string.h>

3 int main() {

4 char src[] = "Hello";

5 char dest [20];

6 printf("Before copy:\n");

7 printf("Source: %s\n", src);

8 strcpy(dest , src);

9 printf("\nAfter copy:\n");

10 printf("Source: %s\n", src);

11 printf("Destination: %s\n", dest);

12 printf("\nNote: dest must be\n");

13 printf("large enough !\n");

14 return 0;

15 }

Output:
Before copy:

Source: Hello

After copy:

Source: Hello

Destination: Hello

Note: dest must be

large enough!

Note:

Copies src to dest

Includes \0
dest must have space

No bounds checking

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 11 / 30

Program 8: strcat - String Concatenation

1 #include <stdio.h>

2 #include <string.h>

3 int main() {

4 char str1 [20] = "Hello";

5 char str2[] = " World";

6 printf("str1: \"%s\"\n", str1);

7 printf("str2: \"%s\"\n\n", str2);

8 strcat(str1 , str2);

9 printf("After strcat(str1 , str2):\n");

10 printf("str1: \"%s\"\n", str1);

11 printf("str2: \"%s\"\n", str2);

12 return 0;

13 }

Output:
str1: "Hello"

str2: " World"

After strcat(str1 , str2):

str1: "Hello World"

str2: " World"

Note:

Appends str2 to str1

str1 must have space

str2 unchanged

Result in str1

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 12 / 30

Program 9: strcmp - String Comparison

1 #include <stdio.h>

2 #include <string.h>

3 int main() {

4 char str1[] = "Apple";

5 char str2[] = "Apple";

6 char str3[] = "Banana";

7 int result;

8 result = strcmp(str1 , str2);

9 printf("strcmp (\"%s\", \"%s\") = %d\n",

10 str1 , str2 , result);

11 result = strcmp(str1 , str3);

12 printf("strcmp (\"%s\", \"%s\") = %d\n",

13 str1 , str3 , result);

14 result = strcmp(str3 , str1);

15 printf("strcmp (\"%s\", \"%s\") = %d\n",

16 str3 , str1 , result);

17 return 0;

18 }

Output:
strcmp ("Apple", "Apple ") = 0

strcmp ("Apple", "Banana ") = -1

strcmp (" Banana", "Apple") = 1

Return Values:

0: strings are equal

<0: str1 <str2 (lexicographic)

>0: str1 >str2

Compares ASCII values

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 13 / 30

Program 10: strchr - Find Character

1 #include <stdio.h>

2 #include <string.h>

3 int main() {

4 char str[] = "Hello World";

5 char *ptr;

6 printf("String: %s\n\n", str);

7 ptr = strchr(str , ’o’);

8 if (ptr != NULL) {

9 printf("First ’o’ found at: %ld\n",

10 ptr - str);

11 printf("Substring: %s\n", ptr);

12 }

13 ptr = strchr(str , ’x’);

14 if (ptr == NULL) {

15 printf("\n’x’ not found\n");

16 }

17 return 0;

18 }

Output:
String: Hello World

First ’o’ found at: 4

Substring: o World

’x’ not found

Note:

Returns pointer to first match

NULL if not found

Can calculate index

Pointer arithmetic

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 14 / 30

Program 11: strstr - Find Substring

1 #include <stdio.h>

2 #include <string.h>

3 int main() {

4 char str[] = "Hello World";

5 char *ptr;

6 printf("String: %s\n\n", str);

7 ptr = strstr(str , "World");

8 if (ptr != NULL) {

9 printf("’World ’ found at: %ld\n",

10 ptr - str);

11 printf("Substring: %s\n", ptr);

12 }

13 ptr = strstr(str , "xyz");

14 if (ptr == NULL) {

15 printf("\n’xyz’ not found\n");

16 }

17 return 0;

18 }

Output:
String: Hello World

’World ’ found at: 6

Substring: World

’xyz ’ not found

Note:

Finds substring in string

Returns pointer to match

NULL if not found

Case-sensitive

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 15 / 30

Program 12: Manual String Length

1 #include <stdio.h>

2 int main() {

3 char str[] = "Programming";

4 int length = 0;

5 int i;

6 for (i = 0; str[i] != ’\0’; i++) {

7 length ++;

8 }

9 printf("String: %s\n", str);

10 printf("Length: %d\n", length);

11 printf("\nCounting manually :\n");

12 for (i = 0; str[i] != ’\0’; i++) {

13 printf("str[%d] = ’%c’\n", i, str[i]);

14 }

15 return 0;

16 }

Output:
String: Programming

Length: 11

Counting manually:

str [0] = ’P’

str [1] = ’r’

str [2] = ’o’

str [3] = ’g’

str [4] = ’r’

str [5] = ’a’

str [6] = ’m’

str [7] = ’m’

str [8] = ’i’

str [9] = ’n’

str [10] = ’g’

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 16 / 30

Program 13: Manual String Copy

1 #include <stdio.h>

2 int main() {

3 char src[] = "Hello";

4 char dest [20];

5 int i;

6 printf("Source: %s\n", src);

7 for (i = 0; src[i] != ’\0’; i++) {

8 dest[i] = src[i];

9 }

10 dest[i] = ’\0’;

11 printf("Destination: %s\n\n", dest);

12 printf("Manual copy complete !\n");

13 return 0;

14 }

Output:
Source: Hello

Destination: Hello

Manual copy complete!

Logic:

Copy char by char

Loop until \0
Don’t forget to add \0
Same as strcpy

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 17 / 30

Program 14: Reverse a String

1 #include <stdio.h>

2 #include <string.h>

3 int main() {

4 char str[] = "Hello";

5 int len = strlen(str);

6 int i;

7 char temp;

8 printf("Original: %s\n", str);

9 for (i = 0; i < len/2; i++) {

10 temp = str[i];

11 str[i] = str[len -1-i];

12 str[len -1-i] = temp;

13 }

14 printf("Reversed: %s\n", str);

15 return 0;

16 }

Output:
Original: Hello

Reversed: olleH

Logic:

Swap first and last

Move toward center

Loop len/2 times

In-place reversal

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 18 / 30

Program 15: Check Palindrome

1 #include <stdio.h>

2 #include <string.h>

3 int main() {

4 char str1[] = "madam";

5 char str2[] = "hello";

6 int len , i, palindrome;

7 len = strlen(str1);

8 palindrome = 1;

9 for (i = 0; i < len/2; i++) {

10 if (str1[i] != str1[len -1-i]) {

11 palindrome = 0;

12 break;

13 }

14 }

15 printf("%s: %s\n", str1 ,

16 palindrome ? "Palindrome" :

17 "Not palindrome");

18 len = strlen(str2);

19 palindrome = 1;

20 for (i = 0; i < len/2; i++) {

21 if (str2[i] != str2[len -1-i]) {

22 palindrome = 0;

23 break;

24 }

25 }

26 printf("%s: %s\n", str2 ,

27 palindrome ? "Palindrome" :

28 "Not palindrome");

29 return 0;

30 }

Output:
madam: Palindrome

hello: Not palindrome

Logic:

Compare first and last

Move toward center

If any mismatch, not
palindrome

Check half the string

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 19 / 30

Program 16: Count Vowels and Consonants

1 #include <stdio.h>

2 #include <string.h>

3 int main() {

4 char str[] = "Hello World";

5 int vowels = 0, consonants = 0;

6 int i;

7 char ch;

8 printf("String: %s\n\n", str);

9 for (i = 0; str[i] != ’\0’; i++) {

10 ch = str[i];

11 if (ch >= ’A’ && ch <= ’Z’) {

12 ch = ch + 32;

13 }

14 if (ch == ’a’ || ch == ’e’ ||

15 ch == ’i’ || ch == ’o’ ||

16 ch == ’u’) {

17 vowels ++;

18 } else if (ch >= ’a’ && ch <= ’z’) {

19 consonants ++;

20 }

21 }

22 printf("Vowels: %d\n", vowels);

23 printf("Consonants: %d\n", consonants);

24 return 0;

25 }

Output:
String: Hello World

Vowels: 3

Consonants: 7

Logic:

Convert to lowercase

Check if vowel

Else check if letter

Ignore spaces/punctuation

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 20 / 30

Program 17: Convert to Uppercase

1 #include <stdio.h>

2 int main() {

3 char str[] = "Hello World";

4 int i;

5 printf("Original: %s\n", str);

6 for (i = 0; str[i] != ’\0’; i++) {

7 if (str[i] >= ’a’ && str[i] <= ’z’) {

8 str[i] = str[i] - 32;

9 }

10 }

11 printf("Uppercase: %s\n", str);

12 return 0;

13 }

Output:
Original: Hello World

Uppercase: HELLO WORLD

Logic:

Check if lowercase letter

Subtract 32 from ASCII

’a’ = 97, ’A’ = 65

Difference = 32

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 21 / 30

Program 18: Convert to Lowercase

1 #include <stdio.h>

2 int main() {

3 char str[] = "HELLO WORLD";

4 int i;

5 printf("Original: %s\n", str);

6 for (i = 0; str[i] != ’\0’; i++) {

7 if (str[i] >= ’A’ && str[i] <= ’Z’) {

8 str[i] = str[i] + 32;

9 }

10 }

11 printf("Lowercase: %s\n", str);

12 return 0;

13 }

Output:
Original: HELLO WORLD

Lowercase: hello world

Logic:

Check if uppercase letter

Add 32 to ASCII

’A’ + 32 = ’a’

Simple conversion

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 22 / 30

Program 19: Count Words in String

1 #include <stdio.h>

2 int main() {

3 char str[] = "Hello World from C";

4 int i, words = 0;

5 int inWord = 0;

6 printf("String: %s\n\n", str);

7 for (i = 0; str[i] != ’\0’; i++) {

8 if (str[i] == ’ ’ || str[i] == ’\t’ ||

9 str[i] == ’\n’) {

10 inWord = 0;

11 } else if (inWord == 0) {

12 inWord = 1;

13 words ++;

14 }

15 }

16 printf("Word count: %d\n", words);

17 return 0;

18 }

Output:
String: Hello World from C

Word count: 4

Logic:

Track if inside word

Space/tab ends word

Non-space starts new word

Increment on word start

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 23 / 30

Program 20: Remove Spaces

1 #include <stdio.h>

2 int main() {

3 char str[] = "Hello World";

4 int i, j = 0;

5 printf("Original: \"%s\"\n", str);

6 for (i = 0; str[i] != ’\0’; i++) {

7 if (str[i] != ’ ’) {

8 str[j] = str[i];

9 j++;

10 }

11 }

12 str[j] = ’\0’;

13 printf("No spaces: \"%s\"\n", str);

14 return 0;

15 }

Output:
Original: "Hello World"

No spaces: "HelloWorld"

Logic:

Two indices: i and j

i scans entire string

j tracks write position

Skip spaces, copy others

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 24 / 30

Program 21: Common String Mistakes

1 #include <stdio.h>

2 int main() {

3 char str1 [6] = "Hello";

4 char str2 [6];

5 printf("Mistake 1:\n");

6 printf("str2 = str1 is WRONG !\n");

7 printf("Use strcpy instead\n\n");

8 printf("Mistake 2:\n");

9 printf("if(str1==str2) is WRONG !\n");

10 printf("Use strcmp instead\n\n");

11 printf("Mistake 3:\n");

12 printf("Forgetting \\0 causes\n");

13 printf("undefined behavior\n\n");

14 printf("Mistake 4:\n");

15 printf("Buffer overflow if\n");

16 printf("dest too small\n");

17 return 0;

18 }

Output:
Mistake 1:

str2 = str1 is WRONG!

Use strcpy instead

Mistake 2:

if(str1==str2) is WRONG!

Use strcmp instead

Mistake 3:

Forgetting \0 causes

undefined behavior

Mistake 4:

Buffer overflow if

dest too small

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 25 / 30

Strings - Summary

Key Points:

String = character array + \0
Always reserve space for null terminator

%s for string I/O

Cannot assign strings with =

Cannot compare with ==

Use string.h library functions

strlen(), strcpy(), strcat(), strcmp()

fgets() safer than gets()

Manual operations use loops

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 26 / 30

String Library Functions

Function Purpose
strlen(s) Length of string

strcpy(dest, src) Copy string

strcat(dest, src) Concatenate strings

strcmp(s1, s2) Compare strings

strchr(s, c) Find character

strstr(s1, s2) Find substring

strupr(s) Convert to uppercase

strlwr(s) Convert to lowercase

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 27 / 30

Best Practices

1 Always null-terminate strings

2 Check buffer sizes before copying

3 Use fgets() instead of gets()

4 Use strncpy() instead of strcpy() for safety

5 Validate input length

6 Initialize arrays before use

7 Use string.h functions when available

8 Avoid buffer overflow - check bounds

9 Remember \0 when calculating size

10 Handle empty strings (length 0)

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 28 / 30

Common Mistakes

1 Forgetting \0: Causes undefined behavior

2 Buffer overflow: Destination too small

3 Using = for assignment: Use strcpy()

4 Using == for comparison: Use strcmp()

5 Off-by-one errors: Size vs length

6 Using gets(): Unsafe, use fgets()

7 Not checking NULL: After strchr, strstr

8 Modifying string literals: Undefined behavior

9 scanf with spaces: Use fgets() for lines

10 Not removing newline: From fgets() input

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 29 / 30

Practice Exercises

Try these programs:

1 Find frequency of each character

2 Remove duplicate characters

3 Check if two strings are anagrams

4 Find longest word in sentence

5 Replace all occurrences of character

6 Trim leading and trailing spaces

7 Check if string contains only digits

8 Convert string to integer (atoi)

9 Split string by delimiter

10 Find all permutations of string

Prof. Jyotiprakash Mishra C Programming: Strings January 16, 2026 30 / 30

	Introduction to Strings
	String Basics
	String Input and Output
	String Library Functions
	String Manipulation
	String Operations
	Common Mistakes
	Summary

