C Programming: Functions

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

January 16, 2026

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

Topics Covered

@ Introduction to Functions
© Basic Functions

© Function Prototypes

@ Call by Value

© Return Values

@ Utility Functions

@ Array Functions

© String Functions

© Calculator Example

@ Variable Scope

@ Summary

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

What are Functions?

@ Block of code that performs a specific task
@ Reusable - call multiple times

@ Modular - breaks program into smaller parts
@ Reduces code duplication

o Easier to debug and maintain

Function Components:

Return type - type of value returned
@ Function name - identifier

e Parameters - input values (optional)
@ Function body - code to execute

Why Use Functions?
@ Code reusability
@ Better organization
o Easier testing
@ Abstraction

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

Function Syntax

Function Definition:

return_type function_name (parameter_list) {
' // function body
; return value; // if not void

}

Function Declaration (Prototype):

return_type function_name (parameter_list);

Function Call:

result = function_name (arguments);

Note: Prototype tells compiler about function before use

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

Program 1: Simple Function - No Parameters

. #include <stdio.h> Output:

> void greet() { N

3 printf ("Hello, World!\n"); Calling greet():
1 3} Hello, World!

5 int main() { Hello, World!

) printf("Calling greet():\n"); Hello, World!

/ greet ();

3 greet (); Function called 3 times
) greet ();

) printf ("\nFunction called 3 times\n"); .

L return 0; EXp|anatl0I’I:
>}

@ void = no return value
@ No parameters
o Called 3 times

@ Reusable code block

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

Program 2: Function with Parameters

! #include <stdio.h> Output:

’ void greet(char name[]) {

3 printf ("Hello, %s!'\n", name); Hello, Alice!

1 3} Hello, Bob!

5 int main() { Hello, Charlie!
) greet ("Alice");

/ greet ("Bob"); .

3 greet ("Charlie"); Explanation:
) return O;

)

¥ @ Takes string parameter

@ Different output each call
@ Parameter = input
°

Still void return

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

Program 3: Function with Return Value

e e

#include <stdio.h>
int square(int n) {
return n * n;
}
int main() {
int result;

result = square(5);
printf ("square(5) = %d\n", result);
result = square (10);

printf ("square (10) = %d\n", result);
printf ("square(3) = %d\n", square(3));
return O;

Prof. Jyotiprakash Mishra

Output:

square (5) = 25
square (10) = 100
square (3) = 9

C Programming: Functions

Explanation:
@ Returns int value
o Takes int parameter
@ Return value can be stored
o

Or used directly in expression

January 16, 2026

Program 4: Multiple Parameters

dd (10, 20));
return 0 @ Parameter order matters

| #include <stdio.h> Output:

) int add(int a, int b) {

3 return a + b; add(5, 3) = 8

L multiply (5, 3) = 15
> int multiply(int a, int b) { add (10, 20) = 30

) return a * b;

-}

3 int main() { Note:

) printf ("add (5, 3) = %d\na",

) add (5, 3)); H

L Drints Cantoipia e, 3 = fa\at @ Multiple parameters separated
] multiply (5, 3));

3 printf ("add (10, 20) = %d\n", by comma
b

>

>

@ Multiple functions in one
program

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

Program 5: Function Prototype

e e

#include <stdio.h>

int max(int, int);

int main() {
int a = 10, b = 20;
printf("a = %d, b = %d\n", a, b);
printf ("Maximum: %d\n", max(a, b));

printf ("max (5, 15): %d\n", max(5, 15));

return O0;
}
int max(int x, int y) {
if (x > y) {
return x;
} else {
return y;
}
}

Prof. Jyotiprakash Mishra

Output:

a = 10, b = 20
Maximum: 20
max (5, 15): 15

C Programming: Functions

Explanation:
@ Prototype before main
@ Definition after main

@ Parameter names optional in
prototype

@ Allows any call order

January 16, 2026

e

Program 6: Multiple Prototypes

#include <stdio.h>
int add(int, int);
int subtract(int,
int multiply(int,
int main() {
int a = 10, b = 5;
printf("a = %d, b = %d\n\n", a,
printf("add: %d\n", add(a, b));
printf ("subtract: %d\n",
subtract(a, b));
printf ("multiply: %d\n",
multiply(a, b));
return O;

}

int);
int);

int add(int x, int y) {
return x + y;

}

int subtract(int x, int y) {
return x - y;

}

int multiply(int x, int y) {
return x * y;

}

Prof. Jyotiprakash Mishra

b);

Output:

a =10, b =5

add: 15
subtract: 5

multiply: 50
Note:
@ All prototypes at top

Definitions at bottom

Clean organization

Standard pattern

C Programming: Functions January 16, 2026

Program 7: Call by Value Demonstration

#include <stdio.h> Output:
void modify(int x) {
x = 100; Before call: 10
printf ("Inside function: %d\n", x); Inside function: 100
} After call: 10
int main() {
int num = 10; Original unchanged!

printf ("Before call: %d\n", num);
modify (num); .
printf ("After call: %d\n", num); EXpIanat“)n:
printf ("\nOriginal unchanged!\n");

return O;

N @ Copy of value passed

e e

@ Original not affected
@ Changes only in function

@ This is "call by value”

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

S D e e e T e e e D e e e e T

#include <stdio.h>
void swap(int a, int b) {

int temp = a;

a = b;

b = temp;

printf ("Inside swap: a=%d, b=%d\n",
a, b);

}

int main() {
int x = 5, y = 10;
printf ("Before: x=Yd, y=%d\n", x, y);
swap(x, y);
printf ("After: x=%d, y=%d\n", x, y);
printf ("\nSwap didn’t work!\n");
printf ("Need pointers for swap\n");
return O;

Program 8: Swap - Call by Value Fails

Output:

Before: x=5, y=10
Inside swap: a=10, b=5
After: x=5, y=10

Swap didn’t work!
Need pointers for swap

Note:
@ Values swapped in function
@ Original variables unchanged
o Call by value limitation

@ Pointers needed for swap

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

12/30

Program 9: Multiple Return

| #include <stdio.h> 0utput:

» int absolute(int n) {

3 if (n < 0) { absolute (-5) = 5

A return -n; absolute (10) = 10

; } else { absolute (0) = 0

) return n;

/ }

5y Note:

) int main() {

) printf ("absolute(-5) = %d\n", H

L R AEe e Multiple return paths
) printf ("absolute (10) = %d\n",

3 absolute (10)); @ Only one executes

4 printf ("absolute (0) = %d\n", . i

§ absolute (0)); @ Returns immediately
) return O;

)

@ Function ends at return

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

Program 10: Return Anywhere

#include <stdio.h> Output:
int findFirst(int arr[], int size,
int target) { Array: 10 20 30 40 50
int 1i;)
for (i = 0; i < size; i++) { F}nd 30: ?ndex 2
if (arr[i] == target) { Find 99: index -1
return ij;
3} -1 means not found
¥
return -1; .
' Logic:

int main() {
int arr[] = {10, 20, 30, 40, 50};
printf ("Array: 10 20 30 40 50\n\n");
printf ("Find 30: index %d\n",

@ Return from loop when found

findFirst(arr, 5, 30)); @ Return -1 if not found
printf ("Find 99: index %d\n",
findFirst(arr, 5, 99)); e Early exit optimization

printf ("\n-1 means not found\n");
return O;

e

yotiprakash Mishra C Programming: Functions January 16, 2026

e e e I T e e e D e e e e T

Program 11: Factorial Function

#include <stdio.h>
int factorial(int n) {

}

int result = 1;
int i;
for (i = 1; i <= n; i++) {

result *= i;

return result;

int main() {

}

int i;
printf ("Factorials:\n");
for (i = 0; i <= 6; i++) {
printf ("%d! = %d\n",
i, factorial(i));
¥

return O;

Prof. Jyotiprakash Mishra

Output:
Factorials:
o! =1

1! = 1

2! = 2

3! =6

4! = 24

5! = 120

6! = 720
Note:

o lterative (not recursive)
@ Uses loop

@ Returns calculated value

C Programming: Functions January 16, 2026

Program 12: Prime Number Check

}
printf ("\n");
return O;

. #include <stdio.h> Output:

’ int isPrime(int n) {

3 int i; Prime numbers 1-20:

b if (n <= 1) return 0; 2357 11 13 17 19

> for (i = 2; i * i <= n; i++) {

) if (n % i == 0) { .

/ return 0; Logic:

3 ¥

S _ @ Returns 1 if prime
return 1;

L) . .

) int mainQ) { @ Returns 0 if not prime

3 int i;

? printf ("Prime numbers 1-20:\n"); o Boolean_hke function

> for (i = 1; i <= 20; i++) {

) if (isPrime(i)) {

: prints(nid ", ©); @ Check up to square root

3 s

)

)

|

)

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

Program 13: Power Function

| #include <stdio.h> Output:

’ int power (int base, int exp) {

3 int result = 1; 273 = 8

4 int i; 572 = 25

> for (i = 0; i < exp; i++) { 374 = 81

> result *= base; 1070 =1

/ }

3 return result;

)} Note:

) int main() {

] printf ("2°3 = %d\n", power(2, 3)); 1

] printf("5°2 = %d\n", power(5, 2)); b base raISEd to eXp

3 printf ("374 = %d\n", power(3, 4)); .

. print£("10°0 = %d\n", power (10, 0)); o lterative approach

> return O; i
) @ Works for non-negative exp

@ Returns 1 for exp = 0

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 17 /30

Program 14: GCD Function

| #include <stdio.h> Output:

4 int gcd(int a, int b) {

: int temp; gcd (48, 18) = 6

' while (b '= 0) { gcd (100, 50) = 50

3 temp = b; ged (17, 13) = 1

) b =a % b;

/ a = temp;

S Note:

) return a;

)3 ; ;
e et o Euclidean algorithm
J printf ("gcd (48, 18) = %d\n", .

3 god (48, 18)); @ Uses while loop

4 printf ("gcd (100, 50) = %d\n",

§ gcd (100, 50)); @ Returns greatest common
> printf ("gecd (17, 13) = %d\n", L.

/ ged (17, 13)); divisor

3 return 0;

)

' @ GCD of coprime =1

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 18 /30

Program 15: Array Sum Function

e e

#include <stdio.h>
int arraySum(int arr[], int size) {
int sum = O0;
int i;
for (i = 0; i < size;
sum += arr[i];
}
return sum;
}
int main() {
int nums[] = {10,
int size = 5;
printf ("Array: ");
for (int i = 0; i < size; i++) {
printf("%d ", nums[il);

i++) {

20, 30, 40,

printf ("\n\nSum: %d\n",
arraySum(nums, size));
return O;

Prof. Jyotiprakash Mishra

50};

Output:

Array: 10 20 30 40 50

Sum: 150

Note:

’ @ Array passed as parameter
@ Must also pass size
@ Array name = pointer

@ Size not known inside function

C Programming: Functions January 16, 2026

B e e

Program 16: Find Maximum

#include <stdio.h>
int findMax(int arr[], int size) {

int max = arr[0];
int i;
for (i = 1; i < size; i++) {
if (arr[i]l > max) {
max = arr[i];
s
¥
return max;

}
int main() {
int nums[] = {34, 12, 89, 5, 67};
printf ("Array: 34 12 89 5 67\n");
printf ("Maximum: %d\n",
findMax (nums, 5));
return O;

Prof. Jyotiprakash Mishra

C Programming: Functions

in Array

Output:

Array: 34 12 89 5 67
Maximum: 89

Logic:
@ Assume first is max
o Compare with rest
@ Update if larger found
°

Return maximum

January 16, 2026

Program 17: Print Array Function

#include <stdio.h> Output:
void printArray(int arr([], int size) {
int i; Array 1: [1, 2, 3, 4, 5]
printf ("["); Array 2: [10, 20, 30]
for (i = 0; i < size; i++) {
printf ("%d", arr[il);
if (i < size - 1) { Note:
printf (", ");
L @ Void function

rintf (" J\n"); .
P o Just prlnts, no return
int main() {
int arri[] = {1, 2, 3, 4, 5}; @ Reusable d|sp|ay
int arr2[] = {10, 20, 30};
printf ("Array 1: ");
printArray(arrl, 5);
printf ("Array 2: ");
printArray (arr2, 3);
return O;

@ Nice formatting

e

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

e e

Program 18: String Length Function

#include <stdio.h>
int stringLength(char str([]) {

int len = O0;
while (str[len] !'= ’\0’) {
len++;

}
return len;

}

int main() {
char stri[] = "Hello";
char str2[] = "Programming";
printf ("stri: \"%s\"\n", strl);
printf ("Length: %d\n\n",

stringlLength(strl));

printf ("str2: \"%s\"\n", str2);
printf ("Length: %d\n",

stringLength(str2));
return O;

Prof. Jyotiprakash Mishra

Output:

strl: "Hello"
Length: 5

str2: "Programming"
Length: 11

Note:
@ Manual strlen
e Count until \0
@ String = char array
°

Returns int length

C Programming: Functions January 16, 2026

Program 19: String Copy Function

printf ("Destination: %s\n", dest);
return O;

N e Void function (modifies dest)

| #include <stdio.h> 0utput:

» void stringCopy(char dest[], char src[]) {

3 int i = 03 Source: Hello

1 while (src[i] !'= °\0’) { Destination: Hello

> dest[i] = srclil;

) i++;

i Note:

3 dest[i] = ’\0’;

)}

Lt mainO @ Manual strcpy

! char src[] = "Hello";

) char dest [20]; @ Copy char by char
3 printf ("Source: %s\n", src); .

: stringCopy(dest, src); @ Add null terminator
)

)

/

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

Program 20: Calculator with Functions

#include <stdio.h> 0utput:

int add(int a, int b) { return a+b; }

int sub(int a, int b) { return a-b; } Calculator

int mul(int a, int b) { return a*b; } 1. Add

int div(int a, int b) { return a/b; } 2. Subtract

void showMenu() { 3. Multiply
4. Divide

printf ("\nCalculator\n");

printf ("1. Add\n2. Subtract\n");
printf("3. Multiply\n4. Divide\n"); Gificos 4
Numbers: 10, 5

int main() {

printf ("Result: %d\n", div(a,b));
return O;

int a = 10, b = 5, choice = 1; Result: 15
showMenu () ;
printf ("\nChoice: %d\n", choice);
printf ("Numbers: %d, %d\n\n", a, b); Note:
if (choice == 1)
printf ("Result: %d\n", add(a,b)); 1 |
Pt CResute:) @ Multiple small functions
printf ("Result: %d\n", sub(a,b)); .
else if (choice == 3) @ Each does one thing
printf ("Result: %d\n", mul(a,b));
else if (choice == 4) @ Modular design
o

e e

Easy to maintain

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2

Program 21: Local vs Global Variables

S e e e i T e e e e e e e e T

#include <stdio.h>
int global = 100;
void testScope() {

}

int local = 50;

printf ("Inside function:\n");
printf (" 1local = %d\n", local);
printf (" global = %d\n", global);
global = 200;

int main() {

printf ("Before call:\n");

printf (" global = %d\n\n", global);
testScope ();

printf ("\nAfter call:\n");

printf (" global = %d\n", global);
return O;

Prof. Jyotiprakash Mishra

Output:

Before call:
global = 100

Inside function:
local = 50
global = 100

After call:
global = 200

Note:

C Programming: Functions

Global: accessible everywhere
Local: only in function
Global can be modified

Local destroyed after function

January 16, 2026

Functions - Summary

Key Points:

Function = reusable code block
Prototype declares, definition implements
Parameters = input, return = output
Call by value = copy passed

void = no return value

Multiple returns possible

Arrays passed with size

Local variables in function scope

Global variables accessible everywhere

Break programs into functions

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

Function Components

Component Description

Return type Type of value returned (void if none)
Function name Identifier for the function

Parameters Input values (optional)

Function body Code to execute

Return statement | Returns value (if not void)

Example:

int add(int a, int b) { return a+b; }
@ Return type: int

@ Name: add

@ Parameters: int a, int b

°

Body: { return a+b; }

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 27 /30

Best Practices

One task per function - single responsibility

Use prototypes for better organization

Meaningful names - describe what it does

Keep functions short - easier to understand
Document parameters - comment what they mean
Validate input - check parameters

Use const for parameters that shouldn’t change

Return error codes - use -1, NULL for errors

0000000 O0CO

Minimize global variables - use parameters
@ Test functions independently

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 28 /30

Common Mistakes

© Missing prototype - declaration before use

@ Type mismatch - return type vs actual return
Missing return - non-void function must return
Wrong parameter count - must match definition
Parameter order - position matters

Modifying local copy - call by value limitation
Array size unknown - must pass size separately
Returning local address - undefined behavior

Infinite loops - in iterative functions

6000006060

Not initializing - local variables

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 29/30

Practice Exercises

Try these programs:

@ Write fibonacci function (iterative)
Check if number is perfect square
Reverse an array using function
Find LCM of two numbers
Count digits in a number
Convert decimal to binary (iterative)
Check if string is palindrome
Bubble sort function

Linear search function

000000600

Matrix addition function

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026

	Introduction to Functions
	Basic Functions
	Function Prototypes
	Call by Value
	Return Values
	Utility Functions
	Array Functions
	String Functions
	Calculator Example
	Variable Scope
	Summary

