C Programming: Functions

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

January 16, 2026

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026



Topics Covered

@ Introduction to Functions
© Basic Functions

© Function Prototypes

@ Call by Value

© Return Values

@ Utility Functions

@ Array Functions

© String Functions

© Calculator Example

@ Variable Scope

@ Summary

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026



What are Functions?

@ Block of code that performs a specific task
@ Reusable - call multiple times

@ Modular - breaks program into smaller parts
@ Reduces code duplication

o Easier to debug and maintain

Function Components:

Return type - type of value returned
@ Function name - identifier

e Parameters - input values (optional)
@ Function body - code to execute

Why Use Functions?
@ Code reusability
@ Better organization
o Easier testing
@ Abstraction
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Function Syntax

Function Definition:

return_type function_name (parameter_list) {
' // function body
; return value; // if not void

}

Function Declaration (Prototype):

return_type function_name (parameter_list);

Function Call:

result = function_name (arguments);

Note: Prototype tells compiler about function before use
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Program 1: Simple Function - No Parameters

. #include <stdio.h> Output:

> void greet() { N

3 printf ("Hello, World!\n"); Calling greet():
1 3} Hello, World!

5 int main() { Hello, World!

) printf("Calling greet():\n"); Hello, World!

/ greet ();

3 greet (); Function called 3 times
) greet ();

) printf ("\nFunction called 3 times\n"); .

L return 0; EXp|anatl0I’I:
>}

@ void = no return value
@ No parameters
o Called 3 times

@ Reusable code block
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Program 2: Function with Parameters

! #include <stdio.h> Output:

’  void greet(char name[]) {

3 printf ("Hello, %s!'\n", name); Hello, Alice!

1 3} Hello, Bob!

5 int main() { Hello, Charlie!
) greet ("Alice");

/ greet ("Bob"); .

3 greet ("Charlie"); Explanation:
) return O;

)

¥ @ Takes string parameter

@ Different output each call
@ Parameter = input
°

Still void return
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Program 3: Function with Return Value

e e

#include <stdio.h>
int square(int n) {
return n * n;
}
int main() {
int result;

result = square(5);
printf ("square(5) = %d\n", result);
result = square (10);

printf ("square (10) = %d\n", result);
printf ("square(3) = %d\n", square(3));
return O;
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Output:

square (5) = 25
square (10) = 100
square (3) = 9

C Programming: Functions

Explanation:
@ Returns int value
o Takes int parameter
@ Return value can be stored
o

Or used directly in expression
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Program 4: Multiple Parameters

dd (10, 20));
return 0 @ Parameter order matters

| #include <stdio.h> Output:

) int add(int a, int b) {

3 return a + b; add(5, 3) = 8

L multiply (5, 3) = 15
> int multiply(int a, int b) { add (10, 20) = 30

) return a * b;

-}

3 int main() { Note:

) printf ("add (5, 3) = %d\na",

) add (5, 3)); H

L Drints Cantoipia e, 3 = fa\at @ Multiple parameters separated
] multiply (5, 3));

3 printf ("add (10, 20) = %d\n", by comma
b

>

>

@ Multiple functions in one
program
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Program 5: Function Prototype

e e

#include <stdio.h>

int max(int, int);

int main() {
int a = 10, b = 20;
printf("a = %d, b = %d\n", a, b);
printf ("Maximum: %d\n", max(a, b));

printf ("max (5, 15): %d\n", max(5, 15));

return O0;
}
int max(int x, int y) {
if (x > y) {
return x;
} else {
return y;
}
}

Prof. Jyotiprakash Mishra

Output:

a = 10, b = 20
Maximum: 20
max (5, 15): 15

C Programming: Functions

Explanation:
@ Prototype before main
@ Definition after main

@ Parameter names optional in
prototype

@ Allows any call order
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Program 6: Multiple Prototypes

#include <stdio.h>
int add(int, int);
int subtract(int,
int multiply(int,
int main() {
int a = 10, b = 5;
printf("a = %d, b = %d\n\n", a,
printf("add: %d\n", add(a, b));
printf ("subtract: %d\n",
subtract(a, b));
printf ("multiply: %d\n",
multiply(a, b));
return O;

}

int);
int);

int add(int x, int y) {
return x + y;

}

int subtract(int x, int y) {
return x - y;

}

int multiply(int x, int y) {
return x * y;

}
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b);

Output:

a =10, b =5

add: 15
subtract: 5

multiply: 50
Note:
@ All prototypes at top

Definitions at bottom

Clean organization

Standard pattern
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Program 7: Call by Value Demonstration

#include <stdio.h> Output:
void modify(int x) {
x = 100; Before call: 10
printf ("Inside function: %d\n", x); Inside function: 100
} After call: 10
int main() {
int num = 10; Original unchanged!

printf ("Before call: %d\n", num);
modify (num); .
printf ("After call: %d\n", num); EXpIanat“)n:
printf ("\nOriginal unchanged!\n");

return O;

N @ Copy of value passed

e e

@ Original not affected
@ Changes only in function

@ This is "call by value”
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#include <stdio.h>
void swap(int a, int b) {

int temp = a;

a = b;

b = temp;

printf ("Inside swap: a=%d, b=%d\n",
a, b);

}

int main() {
int x = 5, y = 10;
printf ("Before: x=Yd, y=%d\n", x, y);
swap(x, y);
printf ("After: x=%d, y=%d\n", x, y);
printf ("\nSwap didn’t work!\n");
printf ("Need pointers for swap\n");
return O;

Program 8: Swap - Call by Value Fails

Output:

Before: x=5, y=10
Inside swap: a=10, b=5
After: x=5, y=10

Swap didn’t work!
Need pointers for swap

Note:
@ Values swapped in function
@ Original variables unchanged
o Call by value limitation

@ Pointers needed for swap
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Program 9: Multiple Return

| #include <stdio.h> 0utput:

»  int absolute(int n) {

3 if (n < 0) { absolute (-5) = 5

A return -n; absolute (10) = 10

; } else { absolute (0) = 0

) return n;

/ }

5y Note:

) int main() {

) printf ("absolute(-5) = %d\n", H

L R AEe e Multiple return paths
) printf ("absolute (10) = %d\n",

3 absolute (10)); @ Only one executes

4 printf ("absolute (0) = %d\n", . i

§ absolute (0)); @ Returns immediately
) return O;

)

@ Function ends at return
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Program 10: Return Anywhere

#include <stdio.h> Output:
int findFirst(int arr[], int size,
int target) { Array: 10 20 30 40 50
int 1i; )
for (i = 0; i < size; i++) { F}nd 30: ?ndex 2
if (arr[i] == target) { Find 99: index -1
return ij;
3} -1 means not found
¥
return -1; .
' Logic:

int main() {
int arr[] = {10, 20, 30, 40, 50};
printf ("Array: 10 20 30 40 50\n\n");
printf ("Find 30: index %d\n",

@ Return from loop when found

findFirst(arr, 5, 30)); @ Return -1 if not found
printf ("Find 99: index %d\n", . .. .
findFirst(arr, 5, 99)); e Early exit optimization

printf ("\n-1 means not found\n");
return O;

e
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Program 11: Factorial Function

#include <stdio.h>
int factorial(int n) {

}

int result = 1;
int i;
for (i = 1; i <= n; i++) {

result *= i;

return result;

int main() {

}

int i;
printf ("Factorials:\n");
for (i = 0; i <= 6; i++) {
printf ("%d! = %d\n",
i, factorial(i));
¥

return O;
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Output:
Factorials:
o! =1

1! = 1

2! = 2

3! =6

4! = 24

5! = 120

6! = 720
Note:

o lterative (not recursive)
@ Uses loop

@ Returns calculated value
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Program 12: Prime Number Check

}
printf ("\n");
return O;

. #include <stdio.h> Output:

’ int isPrime(int n) {

3 int i; Prime numbers 1-20:

b if (n <= 1) return 0; 2357 11 13 17 19

> for (i = 2; i * i <= n; i++) {

) if (n % i == 0) { .

/ return 0; Logic:

3 ¥

S _ @ Returns 1 if prime
return 1;

L) . .

) int mainQ) { @ Returns 0 if not prime

3 int i;

? printf ("Prime numbers 1-20:\n"); o Boolean_hke function

> for (i = 1; i <= 20; i++) {

) if (isPrime(i)) {

: prints(nid ", ©); @ Check up to square root

3 s

)

)

|

)
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Program 13: Power Function

| #include <stdio.h> Output:

’  int power (int base, int exp) {

3 int result = 1; 273 = 8

4 int i; 572 = 25

> for (i = 0; i < exp; i++) { 374 = 81

> result *= base; 1070 =1

/ }

3 return result;

)} Note:

) int main() {

] printf ("2°3 = %d\n", power(2, 3)); 1

] printf("5°2 = %d\n", power(5, 2)); b base raISEd to eXp

3 printf ("374 = %d\n", power(3, 4)); .

. print£("10°0 = %d\n", power (10, 0)); o lterative approach

> return O; i
) @ Works for non-negative exp

@ Returns 1 for exp = 0
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Program 14: GCD Function

| #include <stdio.h> Output:

4 int gcd(int a, int b) {

: int temp; gcd (48, 18) = 6

' while (b '= 0) { gcd (100, 50) = 50

3 temp = b; ged (17, 13) = 1

) b =a % b;

/ a = temp;

S Note:

) return a;

)3 ; ;
e et o Euclidean algorithm
J printf ("gcd (48, 18) = %d\n", .

3 god (48, 18)); @ Uses while loop

4 printf ("gcd (100, 50) = %d\n",

§ gcd (100, 50)); @ Returns greatest common
> printf ("gecd (17, 13) = %d\n", L.

/ ged (17, 13)); divisor

3 return 0;

)

' @ GCD of coprime =1
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Program 15: Array Sum Function

e e

#include <stdio.h>
int arraySum(int arr[], int size) {
int sum = O0;
int i;
for (i = 0; i < size;
sum += arr[i];
}
return sum;
}
int main() {
int nums[] = {10,
int size = 5;
printf ("Array: ");
for (int i = 0; i < size; i++) {
printf("%d ", nums[il);

i++) {

20, 30, 40,

printf ("\n\nSum: %d\n",
arraySum(nums, size));
return O;
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50};

Output:

Array: 10 20 30 40 50

Sum: 150

Note:

’ @ Array passed as parameter
@ Must also pass size
@ Array name = pointer

@ Size not known inside function
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Program 16: Find Maximum

#include <stdio.h>
int findMax(int arr[], int size) {

int max = arr[0];
int i;
for (i = 1; i < size; i++) {
if (arr[i]l > max) {
max = arr[i];
s
¥
return max;

}
int main() {
int nums[] = {34, 12, 89, 5, 67};
printf ("Array: 34 12 89 5 67\n");
printf ("Maximum: %d\n",
findMax (nums, 5));
return O;

Prof. Jyotiprakash Mishra

C Programming: Functions

in Array

Output:

Array: 34 12 89 5 67
Maximum: 89

Logic:
@ Assume first is max
o Compare with rest
@ Update if larger found
°

Return maximum
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Program 17: Print Array Function

#include <stdio.h> Output:
void printArray(int arr([], int size) {
int i; Array 1: [ 1, 2, 3, 4, 5]
printf ("[ "); Array 2: [ 10, 20, 30 ]
for (i = 0; i < size; i++) {
printf ("%d", arr[il);
if (i < size - 1) { Note:
printf (", ");
L @ Void function

rintf (" J\n"); .
P o Just prlnts, no return
int main() {
int arri[] = {1, 2, 3, 4, 5}; @ Reusable d|sp|ay
int arr2[] = {10, 20, 30};
printf ("Array 1: ");
printArray(arrl, 5);
printf ("Array 2: ");
printArray (arr2, 3);
return O;

@ Nice formatting

e
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Program 18: String Length Function

#include <stdio.h>
int stringLength(char str([]) {

int len = O0;
while (str[len] !'= ’\0’) {
len++;

}
return len;

}

int main() {
char stri[] = "Hello";
char str2[] = "Programming";
printf ("stri: \"%s\"\n", strl);
printf ("Length: %d\n\n",

stringlLength(strl));

printf ("str2: \"%s\"\n", str2);
printf ("Length: %d\n",

stringLength(str2));
return O;
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Output:

strl: "Hello"
Length: 5

str2: "Programming"
Length: 11

Note:
@ Manual strlen
e Count until \0
@ String = char array
°

Returns int length
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Program 19: String Copy Function

printf ("Destination: %s\n", dest);
return O;

N e Void function (modifies dest)

| #include <stdio.h> 0utput:

»  void stringCopy(char dest[], char src[]) {

3 int i = 03 Source: Hello

1 while (src[i] !'= °\0’) { Destination: Hello

> dest[i] = srclil;

) i++;

i Note:

3 dest[i] = ’\0’;

)}

Lt mainO @ Manual strcpy

! char src[] = "Hello";

) char dest [20]; @ Copy char by char
3 printf ("Source: %s\n", src); .

: stringCopy(dest, src); @ Add null terminator
)

)

/
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Program 20: Calculator with Functions

#include <stdio.h> 0utput:

int add(int a, int b) { return a+b; }

int sub(int a, int b) { return a-b; } Calculator

int mul(int a, int b) { return a*b; } 1. Add

int div(int a, int b) { return a/b; } 2. Subtract

void showMenu() { 3. Multiply
4. Divide

printf ("\nCalculator\n");

printf ("1. Add\n2. Subtract\n");
printf("3. Multiply\n4. Divide\n"); Gificos 4
Numbers: 10, 5

int main() {

printf ("Result: %d\n", div(a,b));
return O;

int a = 10, b = 5, choice = 1; Result: 15
showMenu () ;
printf ("\nChoice: %d\n", choice);
printf ("Numbers: %d, %d\n\n", a, b); Note:
if (choice == 1)
printf ("Result: %d\n", add(a,b)); 1 |
Pt CResute: ) @ Multiple small functions
printf ("Result: %d\n", sub(a,b)); .
else if (choice == 3) @ Each does one thing
printf ("Result: %d\n", mul(a,b));
else if (choice == 4) @ Modular design
o

e e

Easy to maintain
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Program 21: Local vs Global Variables
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#include <stdio.h>
int global = 100;
void testScope() {

}

int local = 50;

printf ("Inside function:\n");
printf (" 1local = %d\n", local);
printf (" global = %d\n", global);
global = 200;

int main() {

printf ("Before call:\n");

printf (" global = %d\n\n", global);
testScope ();

printf ("\nAfter call:\n");

printf (" global = %d\n", global);
return O;
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Output:

Before call:
global = 100

Inside function:
local = 50
global = 100

After call:
global = 200

Note:

C Programming: Functions

Global: accessible everywhere
Local: only in function
Global can be modified

Local destroyed after function
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Functions - Summary

Key Points:

Function = reusable code block
Prototype declares, definition implements
Parameters = input, return = output
Call by value = copy passed

void = no return value

Multiple returns possible

Arrays passed with size

Local variables in function scope

Global variables accessible everywhere

Break programs into functions
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Function Components

Component Description

Return type Type of value returned (void if none)
Function name Identifier for the function

Parameters Input values (optional)

Function body Code to execute

Return statement | Returns value (if not void)

Example:

int add(int a, int b) { return a+b; }
@ Return type: int

@ Name: add

@ Parameters: int a, int b

°

Body: { return a+b; }
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Best Practices

One task per function - single responsibility

Use prototypes for better organization

Meaningful names - describe what it does

Keep functions short - easier to understand
Document parameters - comment what they mean
Validate input - check parameters

Use const for parameters that shouldn’t change

Return error codes - use -1, NULL for errors

0000000 O0CO

Minimize global variables - use parameters
@ Test functions independently
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Common Mistakes

© Missing prototype - declaration before use

@ Type mismatch - return type vs actual return
Missing return - non-void function must return
Wrong parameter count - must match definition
Parameter order - position matters

Modifying local copy - call by value limitation
Array size unknown - must pass size separately
Returning local address - undefined behavior

Infinite loops - in iterative functions

6000006060

Not initializing - local variables
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Practice Exercises

Try these programs:

@ Write fibonacci function (iterative)
Check if number is perfect square
Reverse an array using function
Find LCM of two numbers
Count digits in a number
Convert decimal to binary (iterative)
Check if string is palindrome
Bubble sort function

Linear search function

000000600

Matrix addition function
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