
C Programming: Functions

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

January 16, 2026

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 1 / 30

Topics Covered

1 Introduction to Functions

2 Basic Functions

3 Function Prototypes

4 Call by Value

5 Return Values

6 Utility Functions

7 Array Functions

8 String Functions

9 Calculator Example

10 Variable Scope

11 Summary

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 2 / 30

What are Functions?

Block of code that performs a specific task

Reusable - call multiple times

Modular - breaks program into smaller parts

Reduces code duplication

Easier to debug and maintain

Function Components:

Return type - type of value returned

Function name - identifier

Parameters - input values (optional)

Function body - code to execute

Why Use Functions?

Code reusability

Better organization

Easier testing

Abstraction
Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 3 / 30

Function Syntax

Function Definition:
1 return_type function_name(parameter_list) {

2 // function body

3 return value; // if not void

4 }

Function Declaration (Prototype):
1 return_type function_name(parameter_list);

Function Call:
1 result = function_name(arguments);

Note: Prototype tells compiler about function before use

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 4 / 30

Program 1: Simple Function - No Parameters

1 #include <stdio.h>

2 void greet() {

3 printf("Hello , World!\n");

4 }

5 int main() {

6 printf("Calling greet ():\n");

7 greet ();

8 greet ();

9 greet ();

10 printf("\nFunction called 3 times\n");

11 return 0;

12 }

Output:
Calling greet ():

Hello , World!

Hello , World!

Hello , World!

Function called 3 times

Explanation:

void = no return value

No parameters

Called 3 times

Reusable code block

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 5 / 30

Program 2: Function with Parameters

1 #include <stdio.h>

2 void greet(char name []) {

3 printf("Hello , %s!\n", name);

4 }

5 int main() {

6 greet("Alice");

7 greet("Bob");

8 greet("Charlie");

9 return 0;

10 }

Output:
Hello , Alice!

Hello , Bob!

Hello , Charlie!

Explanation:

Takes string parameter

Different output each call

Parameter = input

Still void return

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 6 / 30

Program 3: Function with Return Value

1 #include <stdio.h>

2 int square(int n) {

3 return n * n;

4 }

5 int main() {

6 int result;

7 result = square (5);

8 printf("square (5) = %d\n", result);

9 result = square (10);

10 printf("square (10) = %d\n", result);

11 printf("square (3) = %d\n", square (3));

12 return 0;

13 }

Output:
square (5) = 25

square (10) = 100

square (3) = 9

Explanation:

Returns int value

Takes int parameter

Return value can be stored

Or used directly in expression

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 7 / 30

Program 4: Multiple Parameters

1 #include <stdio.h>

2 int add(int a, int b) {

3 return a + b;

4 }

5 int multiply(int a, int b) {

6 return a * b;

7 }

8 int main() {

9 printf("add(5, 3) = %d\n",

10 add(5, 3));

11 printf("multiply(5, 3) = %d\n",

12 multiply(5, 3));

13 printf("add(10, 20) = %d\n",

14 add(10, 20));

15 return 0;

16 }

Output:
add(5, 3) = 8

multiply(5, 3) = 15

add(10, 20) = 30

Note:

Multiple parameters separated
by comma

Parameter order matters

Multiple functions in one
program

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 8 / 30

Program 5: Function Prototype

1 #include <stdio.h>

2 int max(int , int);

3 int main() {

4 int a = 10, b = 20;

5 printf("a = %d, b = %d\n", a, b);

6 printf("Maximum: %d\n", max(a, b));

7 printf("max(5, 15): %d\n", max(5, 15));

8 return 0;

9 }

10 int max(int x, int y) {

11 if (x > y) {

12 return x;

13 } else {

14 return y;

15 }

16 }

Output:
a = 10, b = 20

Maximum: 20

max(5, 15): 15

Explanation:

Prototype before main

Definition after main

Parameter names optional in
prototype

Allows any call order

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 9 / 30

Program 6: Multiple Prototypes

1 #include <stdio.h>

2 int add(int , int);

3 int subtract(int , int);

4 int multiply(int , int);

5 int main() {

6 int a = 10, b = 5;

7 printf("a = %d, b = %d\n\n", a, b);

8 printf("add: %d\n", add(a, b));

9 printf("subtract: %d\n",

10 subtract(a, b));

11 printf("multiply: %d\n",

12 multiply(a, b));

13 return 0;

14 }

15 int add(int x, int y) {

16 return x + y;

17 }

18 int subtract(int x, int y) {

19 return x - y;

20 }

21 int multiply(int x, int y) {

22 return x * y;

23 }

Output:
a = 10, b = 5

add: 15

subtract: 5

multiply: 50

Note:

All prototypes at top

Definitions at bottom

Clean organization

Standard pattern

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 10 / 30

Program 7: Call by Value Demonstration

1 #include <stdio.h>

2 void modify(int x) {

3 x = 100;

4 printf("Inside function: %d\n", x);

5 }

6 int main() {

7 int num = 10;

8 printf("Before call: %d\n", num);

9 modify(num);

10 printf("After call: %d\n", num);

11 printf("\nOriginal unchanged !\n");

12 return 0;

13 }

Output:
Before call: 10

Inside function: 100

After call: 10

Original unchanged!

Explanation:

Copy of value passed

Original not affected

Changes only in function

This is ”call by value”

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 11 / 30

Program 8: Swap - Call by Value Fails

1 #include <stdio.h>

2 void swap(int a, int b) {

3 int temp = a;

4 a = b;

5 b = temp;

6 printf("Inside swap: a=%d, b=%d\n",

7 a, b);

8 }

9 int main() {

10 int x = 5, y = 10;

11 printf("Before: x=%d, y=%d\n", x, y);

12 swap(x, y);

13 printf("After: x=%d, y=%d\n", x, y);

14 printf("\nSwap didn’t work!\n");

15 printf("Need pointers for swap\n");

16 return 0;

17 }

Output:
Before: x=5, y=10

Inside swap: a=10, b=5

After: x=5, y=10

Swap didn ’t work!

Need pointers for swap

Note:

Values swapped in function

Original variables unchanged

Call by value limitation

Pointers needed for swap

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 12 / 30

Program 9: Multiple Return Statements

1 #include <stdio.h>

2 int absolute(int n) {

3 if (n < 0) {

4 return -n;

5 } else {

6 return n;

7 }

8 }

9 int main() {

10 printf("absolute (-5) = %d\n",

11 absolute (-5));

12 printf("absolute (10) = %d\n",

13 absolute (10));

14 printf("absolute (0) = %d\n",

15 absolute (0));

16 return 0;

17 }

Output:
absolute (-5) = 5

absolute (10) = 10

absolute (0) = 0

Note:

Multiple return paths

Only one executes

Returns immediately

Function ends at return

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 13 / 30

Program 10: Return from Anywhere

1 #include <stdio.h>

2 int findFirst(int arr[], int size ,

3 int target) {

4 int i;

5 for (i = 0; i < size; i++) {

6 if (arr[i] == target) {

7 return i;

8 }

9 }

10 return -1;

11 }

12 int main() {

13 int arr[] = {10, 20, 30, 40, 50};

14 printf("Array: 10 20 30 40 50\n\n");

15 printf("Find 30: index %d\n",

16 findFirst(arr , 5, 30));

17 printf("Find 99: index %d\n",

18 findFirst(arr , 5, 99));

19 printf("\n-1 means not found\n");

20 return 0;

21 }

Output:
Array: 10 20 30 40 50

Find 30: index 2

Find 99: index -1

-1 means not found

Logic:

Return from loop when found

Return -1 if not found

Early exit optimization

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 14 / 30

Program 11: Factorial Function

1 #include <stdio.h>

2 int factorial(int n) {

3 int result = 1;

4 int i;

5 for (i = 1; i <= n; i++) {

6 result *= i;

7 }

8 return result;

9 }

10 int main() {

11 int i;

12 printf("Factorials :\n");

13 for (i = 0; i <= 6; i++) {

14 printf("%d! = %d\n",

15 i, factorial(i));

16 }

17 return 0;

18 }

Output:
Factorials:

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

Note:

Iterative (not recursive)

Uses loop

Returns calculated value

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 15 / 30

Program 12: Prime Number Check

1 #include <stdio.h>

2 int isPrime(int n) {

3 int i;

4 if (n <= 1) return 0;

5 for (i = 2; i * i <= n; i++) {

6 if (n % i == 0) {

7 return 0;

8 }

9 }

10 return 1;

11 }

12 int main() {

13 int i;

14 printf("Prime numbers 1-20:\n");

15 for (i = 1; i <= 20; i++) {

16 if (isPrime(i)) {

17 printf("%d ", i);

18 }

19 }

20 printf("\n");

21 return 0;

22 }

Output:
Prime numbers 1-20:

2 3 5 7 11 13 17 19

Logic:

Returns 1 if prime

Returns 0 if not prime

Boolean-like function

Check up to square root

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 16 / 30

Program 13: Power Function

1 #include <stdio.h>

2 int power(int base , int exp) {

3 int result = 1;

4 int i;

5 for (i = 0; i < exp; i++) {

6 result *= base;

7 }

8 return result;

9 }

10 int main() {

11 printf("2^3 = %d\n", power(2, 3));

12 printf("5^2 = %d\n", power(5, 2));

13 printf("3^4 = %d\n", power(3, 4));

14 printf("10^0 = %d\n", power(10, 0));

15 return 0;

16 }

Output:
2^3 = 8

5^2 = 25

3^4 = 81

10^0 = 1

Note:

base raised to exp

Iterative approach

Works for non-negative exp

Returns 1 for exp = 0

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 17 / 30

Program 14: GCD Function

1 #include <stdio.h>

2 int gcd(int a, int b) {

3 int temp;

4 while (b != 0) {

5 temp = b;

6 b = a % b;

7 a = temp;

8 }

9 return a;

10 }

11 int main() {

12 printf("gcd(48, 18) = %d\n",

13 gcd(48, 18));

14 printf("gcd(100, 50) = %d\n",

15 gcd(100, 50));

16 printf("gcd(17, 13) = %d\n",

17 gcd(17, 13));

18 return 0;

19 }

Output:
gcd(48, 18) = 6

gcd(100, 50) = 50

gcd(17, 13) = 1

Note:

Euclidean algorithm

Uses while loop

Returns greatest common
divisor

GCD of coprime = 1

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 18 / 30

Program 15: Array Sum Function

1 #include <stdio.h>

2 int arraySum(int arr[], int size) {

3 int sum = 0;

4 int i;

5 for (i = 0; i < size; i++) {

6 sum += arr[i];

7 }

8 return sum;

9 }

10 int main() {

11 int nums[] = {10, 20, 30, 40, 50};

12 int size = 5;

13 printf("Array: ");

14 for (int i = 0; i < size; i++) {

15 printf("%d ", nums[i]);

16 }

17 printf("\n\nSum: %d\n",

18 arraySum(nums , size));

19 return 0;

20 }

Output:
Array: 10 20 30 40 50

Sum: 150

Note:

Array passed as parameter

Must also pass size

Array name = pointer

Size not known inside function

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 19 / 30

Program 16: Find Maximum in Array

1 #include <stdio.h>

2 int findMax(int arr[], int size) {

3 int max = arr [0];

4 int i;

5 for (i = 1; i < size; i++) {

6 if (arr[i] > max) {

7 max = arr[i];

8 }

9 }

10 return max;

11 }

12 int main() {

13 int nums[] = {34, 12, 89, 5, 67};

14 printf("Array: 34 12 89 5 67\n");

15 printf("Maximum: %d\n",

16 findMax(nums , 5));

17 return 0;

18 }

Output:
Array: 34 12 89 5 67

Maximum: 89

Logic:

Assume first is max

Compare with rest

Update if larger found

Return maximum

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 20 / 30

Program 17: Print Array Function

1 #include <stdio.h>

2 void printArray(int arr[], int size) {

3 int i;

4 printf("[");

5 for (i = 0; i < size; i++) {

6 printf("%d", arr[i]);

7 if (i < size - 1) {

8 printf(", ");

9 }

10 }

11 printf("]\n");

12 }

13 int main() {

14 int arr1[] = {1, 2, 3, 4, 5};

15 int arr2[] = {10, 20, 30};

16 printf("Array 1: ");

17 printArray(arr1 , 5);

18 printf("Array 2: ");

19 printArray(arr2 , 3);

20 return 0;

21 }

Output:
Array 1: [1, 2, 3, 4, 5]

Array 2: [10, 20, 30]

Note:

Void function

Just prints, no return

Reusable display

Nice formatting

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 21 / 30

Program 18: String Length Function

1 #include <stdio.h>

2 int stringLength(char str[]) {

3 int len = 0;

4 while (str[len] != ’\0’) {

5 len++;

6 }

7 return len;

8 }

9 int main() {

10 char str1[] = "Hello";

11 char str2[] = "Programming";

12 printf("str1: \"%s\"\n", str1);

13 printf("Length: %d\n\n",

14 stringLength(str1));

15 printf("str2: \"%s\"\n", str2);

16 printf("Length: %d\n",

17 stringLength(str2));

18 return 0;

19 }

Output:
str1: "Hello"

Length: 5

str2: "Programming"

Length: 11

Note:

Manual strlen

Count until \0
String = char array

Returns int length

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 22 / 30

Program 19: String Copy Function

1 #include <stdio.h>

2 void stringCopy(char dest[], char src[]) {

3 int i = 0;

4 while (src[i] != ’\0’) {

5 dest[i] = src[i];

6 i++;

7 }

8 dest[i] = ’\0’;

9 }

10 int main() {

11 char src[] = "Hello";

12 char dest [20];

13 printf("Source: %s\n", src);

14 stringCopy(dest , src);

15 printf("Destination: %s\n", dest);

16 return 0;

17 }

Output:
Source: Hello

Destination: Hello

Note:

Manual strcpy

Copy char by char

Add null terminator

Void function (modifies dest)

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 23 / 30

Program 20: Calculator with Functions

1 #include <stdio.h>

2 int add(int a, int b) { return a+b; }

3 int sub(int a, int b) { return a-b; }

4 int mul(int a, int b) { return a*b; }

5 int div(int a, int b) { return a/b; }

6 void showMenu () {

7 printf("\nCalculator\n");

8 printf("1. Add\n2. Subtract\n");

9 printf("3. Multiply\n4. Divide\n");

10 }

11 int main() {

12 int a = 10, b = 5, choice = 1;

13 showMenu ();

14 printf("\nChoice: %d\n", choice);

15 printf("Numbers: %d, %d\n\n", a, b);

16 if (choice == 1)

17 printf("Result: %d\n", add(a,b));

18 else if (choice == 2)

19 printf("Result: %d\n", sub(a,b));

20 else if (choice == 3)

21 printf("Result: %d\n", mul(a,b));

22 else if (choice == 4)

23 printf("Result: %d\n", div(a,b));

24 return 0;

25 }

Output:
Calculator

1. Add

2. Subtract

3. Multiply

4. Divide

Choice: 1

Numbers: 10, 5

Result: 15

Note:

Multiple small functions

Each does one thing

Modular design

Easy to maintain

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 24 / 30

Program 21: Local vs Global Variables

1 #include <stdio.h>

2 int global = 100;

3 void testScope () {

4 int local = 50;

5 printf("Inside function :\n");

6 printf(" local = %d\n", local);

7 printf(" global = %d\n", global);

8 global = 200;

9 }

10 int main() {

11 printf("Before call:\n");

12 printf(" global = %d\n\n", global);

13 testScope ();

14 printf("\nAfter call:\n");

15 printf(" global = %d\n", global);

16 return 0;

17 }

Output:
Before call:

global = 100

Inside function:

local = 50

global = 100

After call:

global = 200

Note:

Global: accessible everywhere

Local: only in function

Global can be modified

Local destroyed after function

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 25 / 30

Functions - Summary

Key Points:

Function = reusable code block

Prototype declares, definition implements

Parameters = input, return = output

Call by value = copy passed

void = no return value

Multiple returns possible

Arrays passed with size

Local variables in function scope

Global variables accessible everywhere

Break programs into functions

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 26 / 30

Function Components

Component Description
Return type Type of value returned (void if none)

Function name Identifier for the function

Parameters Input values (optional)

Function body Code to execute

Return statement Returns value (if not void)

Example:

int add(int a, int b) { return a+b; }
Return type: int

Name: add

Parameters: int a, int b

Body: { return a+b; }

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 27 / 30

Best Practices

1 One task per function - single responsibility

2 Use prototypes for better organization

3 Meaningful names - describe what it does

4 Keep functions short - easier to understand

5 Document parameters - comment what they mean

6 Validate input - check parameters

7 Use const for parameters that shouldn’t change

8 Return error codes - use -1, NULL for errors

9 Minimize global variables - use parameters

10 Test functions independently

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 28 / 30

Common Mistakes

1 Missing prototype - declaration before use

2 Type mismatch - return type vs actual return

3 Missing return - non-void function must return

4 Wrong parameter count - must match definition

5 Parameter order - position matters

6 Modifying local copy - call by value limitation

7 Array size unknown - must pass size separately

8 Returning local address - undefined behavior

9 Infinite loops - in iterative functions

10 Not initializing - local variables

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 29 / 30

Practice Exercises

Try these programs:

1 Write fibonacci function (iterative)

2 Check if number is perfect square

3 Reverse an array using function

4 Find LCM of two numbers

5 Count digits in a number

6 Convert decimal to binary (iterative)

7 Check if string is palindrome

8 Bubble sort function

9 Linear search function

10 Matrix addition function

Prof. Jyotiprakash Mishra C Programming: Functions January 16, 2026 30 / 30

	Introduction to Functions
	Basic Functions
	Function Prototypes
	Call by Value
	Return Values
	Utility Functions
	Array Functions
	String Functions
	Calculator Example
	Variable Scope
	Summary

