C Programming - Deck 14

Pointers Basics

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 14 1/26

What are Pointers?

A pointer is a variable that stores the memory address of another
variable

@ Pointers allow direct memory access and manipulation
@ Every variable in memory has an address

e Syntax: datatype *pointer name;
°

Example: int *ptr; declares a pointer to an integer

Prof. Jyotiprakash Mishra C Programming - Deck 14

Pointer Operators

o Address-of operator (&): Returns the memory address of a variable
o Dereference operator (*): Accesses the value at the address stored
in pointer

Example: int x = 10; int *p = &x;

&x gives the address of x

*p gives the value stored at address p (which is x)

p contains the address, *p contains the value

Prof. Jyotiprakash Mishra C Programming - Deck 14 3/26

Program 1: Basic Pointer Declaration and Initialization

Output:

Value of x: 42
Address of x: Ox7ffeeb3c4dalc

1 #include <stdio.h>
2 int main() {
3 int x = 42;

4 int *ptr = &x;

5 printf ("Value of x: %d\n", x); 3:1:: :Tf: pzrf Z;7ffeeb354a1c
6 printf ("Address of x: %p\n", (void*)&x); prr:

7 printf ("Value of ptr: %p\n", (void*)ptr);

8 printf ("Value at ptr: %d\n", *ptr); Note: Actual addresses vary each run

9 return O;

10 ¥

yotiprakash Mishra C Programming - Deck 14

Program 2: Changing Value Through Pointer

Output:

Before: x = 10
After: x = 20

1 #include <stdio.h>
2 int main() {
3 int x = 10;

4 int *ptr = &x;

5 printf ("Before: x = %d\n", x); Valwo @i pizs 20
6 *ptr = 20;

7 printf ("After: x = %d\n", x); Modifying *ptr modifies x
8 printf ("Value at ptr: %d\n", *ptr);

9 return O;

10 ¥

yotiprakash Mishra C Programming - Deck 14

Program 3: Pointer to Difl

Output:

int: 100 at Ox7ffeeb3c4dalc
float: 3.14 at Ox7ffeeb3c4als8

1 #include <stdio.h>
2 int main() {
3 int i = 100;

4 f1 f = .14
oat 8.14; char: A at Ox7ffeeb3c4al?
5 char ¢ = A’
6 int *pi = &ij;
7 float *pf = &f; Each type has its own pointer type
8 char *pc = &c;

9 printf ("int: %d at %p\n", *pi, (void*)pi);

10 printf ("float: %.2f at %p\n", *pf, (void*)pf);
11 printf ("char: %c at %p\n", *pc, (voidx)pc);
12 return 0;

Prof. Jyotiprakash Mishra C Programming - Deck 14

Program 4: Pointer Size

Output:

Size of int pointer: 8
Size of float pointer: 8
Size of char pointer: 8
Size of double pointer: 8

1 #include <stdio.h>
2 int main() {

3 int *pi;

4 float *pf;

5 char *pc;

6 double *pd;

7 printf ("Size of int pointer: %lu\n", sizeof(pi));

8 printf("Size of float pointer: %lul\n", sizdbfdipfelssame size (8 bytes on 64-bit)
9 printf ("Size of char pointer: %lu\n", sizeof(pc));

10 printf ("Size of double pointer: %lu\n", sizeof (pd));

11 return 0;

Deck 14

otiprakash Mishra

Program 5: NULL Pointer

1 #include <stdio.h>
2 int main() {

int #*ptr = NULL;
printf ("ptr value: %p\n", (void*)ptr);
if (ptr == NULL) {
printf ("Pointer is NULL\n");
int x = 50;
ptr = &x;
if (ptr != NULL) {

printf ("Pointer now points to: %d\n",

return O0;

yotiprakash Mishra

Output:

ptr value: 0x0
Pointer is NULL
Pointer now points to: 50

Always check for NULL before dereferencing

*ptr);

Deck 14

8/26

Program 6: Swap Two Numbers Using Pointers

1 #include <stdio.h> OUtpl"t'
2 int i
3 min:'a:‘:()lé b < 20 Before: a=10, b=20
4 int *pl = &a, *p2 = &b; LE00RE G2, LD
5 int temp;
6 printf ("Before: a=%d, b=%d\n", a, b); Swapping values through pointers
7 temp = *pl;
8 *pl = *p2;
9 *p2 = temp;
10 printf ("After: a=%d, b=/d\n", a, b);
11 return 0;
12}
Prof. Jyotiprakash Mishra C Programming - Deck 14

Pointer Arithmetic

Pointers support arithmetic operations: +, -, ++, —
Adding 1 to a pointer moves it to the next element
Increment depends on the data type size

int *p; p++; moves p by sizeof (int) bytes

char #*p; p++; moves p by sizeof (char) bytes (1 byte)

p + n moves pointer by n elements (not n bytes)

Pointer subtraction gives number of elements between pointers

Prof. Jyotiprakash Mishra C Programming - Deck 14

Program 7: Pointer Arithmetic - Increme

1 #include <stdio.h>
2 int main() {

Output:

ptr points to: 10

3]..nt arr [5]_ = {10, 20, 30, 40, 50}; After ptri+: 20

4 int xptr = arr; After ptr++: 30

5 printf ("ptr points to: %d\n", *ptr); st

6 ptr++; ptr+2 points to: 50

7 printf ("After ptr++: %d\n", *ptr);

8 ptr++; Pointer moves by sizeof(int) each time
9 printf ("After ptr++: %d\n", *ptr);

10 printf ("ptr+2 points to: %d\n", *(ptr+2));

11 return 0;

Prof. Jyotiprakash Mishra

C Programming - Deck 14

Program 8: Pointer Arithmetic - Address Difference

Output:

pl address: O0x7ffeeb3c4al0

1 #include <stdio.h>
2 int main() {

3 int arr([5] = {1, 2, 3, 4, 5}; .
int *pl = &arr[0]; p2 address: Ox7ffeeb3c4all

4
S ine g2 - paee ()] 3 el @ oo
6 printf ("pl address: %p\n", (void*)pl); yte diiterence:

7 printf ("p2 address: %p\n", (void*)p2);

8

printf("p2 - pl = %1d elements\n", 4 elements X 4 bytes/int = 16 bytes
9 p2 - pl);
10 printf ("Byte difference: %1d\n",
11 (char*)p2-(char*)pl);
12 return 0;
13}

Prof. Jyotiprakash Mishra C Programming - Deck 14

Program 9: Pointer Comparison

1 #include <stdio.h>
2 int main() {

int arr([5] = {10, 20, 30, 40, 50};
int *pl = &arr[1];
int *p2 = &arr[3];
if (p1 < p2) {

printf ("pl comes before p2\n");
s
if (pl == g&arr[1]) {

printf ("pl points to arr[1]\n");
¥
printf("Distance: %1d elements\n", p2
return 0;

yotiprakash Mishra

Output:

pl comes before p2
pl points to arr[1]
Distance: 2 elements

Pointers can be compared for ordering

pl);

Deck 14

: Traversing Array with Pointer

1 #include <stdio.h> OUtPUt'

2 int main() { . . : L
3 int arr(5] = {10, 20, 30, 40, 50}; :j;‘;glpf“l‘;” arithmetic:
1 int *ptr = arr; arr[1] = 20

5 int i; [21 = 30

6 printf ("Using pointer arithmetic:\n"); arr[3] - 40

7 for (i = 0; i < 5; i++) { arr[4] - 50

8 printf("arr[%d] = %d\n", i, *(ptr + i)); °FF =

9

10 return 0; *(ptr + i) is equivalent to arr[i]

11 %}

Prof. Jyotiprakash Mishra C Programming - Deck 14

Program 11: Pointer Increment in Loop

Output:

Array elements:
5 10 15 20 25

1 #include <stdio.h>
2 int main() {
3 int arr([5] = {5, 10, 15, 20, 25};

4 int *ptr = arr;

5 int *end = arr + 5;

6 printf ("Array elements:\n"); Moving pointer through array with ++
7 while (ptr < end) {

8 printf ("%d ", *ptr);

9 ptr++;

10 }

11 printf ("\n");

12 return 0;

yotiprakash Mishra C Programming - Deck 14

Program 12: Pointer to Pointer

1 #include <stdio.h> UtPUt.
5 X
int main() { Value of x: 100
3 int x = 100;
*ptr: 100

int *ptr = &x;
int **pptr = &ptr;

4

5 **pptr: 100
6 printf ("Value of x: %d\n", x);

7

8

Address in ptr: Ox7ffeeb3cdalc

printf ("sxptr: %d\n", *ptr); Address in pptr: O0x7ffeeb3c4all

printf ("#*pptr: %d\n", *xpptr);

9 printf ("Address in ptr: %p\n", Pointer to pointer - double indirection
10 (void*)ptr);

11 printf ("Address in pptr: %p\n",

12 (void*) pptr);

13 return O0;

14 }

Deck 14

yotiprakash Mishra

Program 13: Finding Sum Using Pointers

Output:

1 #include <stdio.h>
2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50}; Sum of array: 150

4 int *ptr = arr;
5 int sum = 0; Accumulating sum with pointer traversal
6 int i;
7 for (i = 0; i < 5; i++) {
8 sum += *ptr;
9 ptr++;
10 }
11 printf ("Sum of array: %d\n", sum);
12 return 0;
13}
Prof. Jyotiprakash Mishra C Programming - Deck 14

Program 14: Finding Maximum Using Pointers

Output:

Maximum element: 89

1 #include <stdio.h>
2 int main() {
3 int arr[5] = {23, 67, 12, 89, 45};

4 int *ptr = arr;
5 int max = *ptr; Finding max with pointer traversal
6 int i;
7 for (i = 1; i < 5; i++) {
8 ptr++;
9 if (*ptr > max) {
10 max = *ptr;
11 ¥
12 ¥
13 printf ("Maximum element: %d\n", max);
14 return 0;
15 %
Prof. Jyotiprakash Mishra C Programming - Deck 14 18 /26

Program 15: Reverse Array Using Pointers

Output:

Reversed: 5 4 3 2 1

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {1, 2, 3, 4, 5};
4 int *left = arr;

5 int *right = arr + 4; Two pointers moving towards each other
6 int temp, ij;

7 while (left < right) {

8 temp = xleft;

9 *left = *right;
10 *right = temp;
11 left++;

12 right--;

13 }

14 printf ("Reversed: ");

15 for (i = 0; i < 5; i++) printf("%d ", arr[i]);
16 printf ("\n");

17 return O0;

Prof. Jyotiprakash Mishra C Programming - Deck 14

Common Pointer Errors

Uninitialized pointers: Using pointer before assigning address
Dangling pointers: Pointer to memory that has been freed

Null pointer dereference: Dereferencing NULL pointer causes crash
Wild pointers: Pointer with garbage value

Memory leaks: Allocated memory not freed (covered in later deck)
Buffer overflow: Accessing beyond array bounds

Always initialize pointers before use

Check for NULL before dereferencing

Prof. Jyotiprakash Mishra C Programming - Deck 14 20/26

Program 16: Uninitialized Pointer Error (DON'T DO

THIS)

Output (wrong):

1 #include <stdio.h>

2 int main() {
3 int *ptr; Segmentation fault (crash)
4 printf ("This will crash or show garbage\n”);OR
5 printf ("Value: %d\n", *ptr); Value: 1234567 (garbage)
6 return O0;
7}

Output (correct):
Correct version: Value: 42

! #include <stdio.h> Always initialize pointers!
2 int main() { Y P .
3 int x = 42;

4 int *ptr = &x;

5 printf ("Value: %d\n", *ptr);
6 return 0;

7

¥

Prof. Jyotiprakash Mishra C Programming - Deck 14 21/26

Program 17: Generic Pointer (void*)

Output:

int value: 100
float value: 3.14
void* can point to any type

1 #include <stdio.h>
2 int main() {

3 int x = 100;

4 float f = 3.14;
5 void *ptr;

6 ptr = &x;

7 printf ("int value: %d\n", *(intx)ptr); void* must be cast before dereferencing
8 ptr = &f;

9 printf ("float value: %.2f\n", *(floatx)ptr);

10 printf ("void* can point to any type\n");

11 return 0;

Deck 14

yotiprakash Mishra

Program 18: Constant Pointer vs Pointer to

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 20;

4 const int *ptrl = &a;

5 int *const ptr2 = &a;

6 printf ("ptrl points to: %d\n", xptril);
7 ptrl = &b;

8 printf ("ptrl now: %d\n", *ptri);
9 *ptr2 = 30;

10 printf ("ptr2 value: %d\n", *ptr2);
11 return 0;

12}

Prof.

yotiprakash Mishra

Constant

Output:

ptrl points to: 10
ptrl now: 20
ptr2 value: 30

ptrl: pointer can change, value can't
ptr2: pointer can't change, value can

C Programming - Deck 14

Program 19: Array of Pointers

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 20, c = 30;
4 int *arr[3];

5 arr [0] = &a;

6 arr [1] = &b;

7 arr [2] = &c;

8 int i;

9 for (i = 0; i < 3; i++) {

Output:

arr [0] points to: 10
arr [1] points to: 20
arr [2] points to: 30

Array where each element is a pointer

10 printf ("arr[%d] points to: %d\n", i, *arr[il);
11

12 return 0;

13}

yotiprakash Mishra

Deck 14

Program 20: Pointer Indirection Levels

1 #include <stdio.h>

2 int main() {

3 int x = 42;

4 int *pl = &x;

5 int **p2 = &pl;

6 int ***p3 = &p2;

7 printf("x = %d\n", x);

8 printf ("*pl = %d\n", *pl);

9 printf ("#xp2 = %d\n", **p2);
10 printf ("#x*p3 = %d\n", **xp3);
11 **%*xp3 = 100;

12 printf ("After change: x = %d\n",
13 return O0;

14 }

Prof. Jyotiprakash Mishra

Output:

x = 42
*pl =
**xp2 = 42
**%xp3 = 42
After change: x =

42

100

Multiple levels of indirection

x);

C Programming - Deck 14

Key Takeaways

Pointers store memory addresses of variables

Use & to get address, * to dereference (get value)
Pointer arithmetic moves by element size, not bytes
Always initialize pointers before use

NULL pointers should be checked before dereferencing
Pointer type must match the variable type it points to
Can have pointers to pointers (multiple indirection)

Pointers enable efficient array manipulation

Common errors: uninitialized, NULL dereference, dangling pointers

Prof. Jyotiprakash Mishra C Programming - Deck 14 26 /26

