
C Programming - Deck 14
Pointers Basics

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 14 1 / 26

What are Pointers?

A pointer is a variable that stores the memory address of another
variable

Pointers allow direct memory access and manipulation

Every variable in memory has an address

Syntax: datatype *pointer name;

Example: int *ptr; declares a pointer to an integer

Prof. Jyotiprakash Mishra C Programming - Deck 14 2 / 26

Pointer Operators

Address-of operator (&): Returns the memory address of a variable

Dereference operator (*): Accesses the value at the address stored
in pointer

Example: int x = 10; int *p = &x;

&x gives the address of x

*p gives the value stored at address p (which is x)

p contains the address, *p contains the value

Prof. Jyotiprakash Mishra C Programming - Deck 14 3 / 26

Program 1: Basic Pointer Declaration and Initialization

1 #include <stdio.h>

2 int main() {

3 int x = 42;

4 int *ptr = &x;

5 printf("Value of x: %d\n", x);

6 printf("Address of x: %p\n", (void *)&x);

7 printf("Value of ptr: %p\n", (void*)ptr);

8 printf("Value at ptr: %d\n", *ptr);

9 return 0;

10 }

Output:
Value of x: 42

Address of x: 0x7ffeeb3c4a1c

Value of ptr: 0x7ffeeb3c4a1c

Value at ptr: 42

Note: Actual addresses vary each run

Prof. Jyotiprakash Mishra C Programming - Deck 14 4 / 26

Program 2: Changing Value Through Pointer

1 #include <stdio.h>

2 int main() {

3 int x = 10;

4 int *ptr = &x;

5 printf("Before: x = %d\n", x);

6 *ptr = 20;

7 printf("After: x = %d\n", x);

8 printf("Value at ptr: %d\n", *ptr);

9 return 0;

10 }

Output:
Before: x = 10

After: x = 20

Value at ptr: 20

Modifying *ptr modifies x

Prof. Jyotiprakash Mishra C Programming - Deck 14 5 / 26

Program 3: Pointer to Different Data Types

1 #include <stdio.h>

2 int main() {

3 int i = 100;

4 float f = 3.14;

5 char c = ’A’;

6 int *pi = &i;

7 float *pf = &f;

8 char *pc = &c;

9 printf("int: %d at %p\n", *pi, (void*)pi);

10 printf("float: %.2f at %p\n", *pf , (void*)pf);

11 printf("char: %c at %p\n", *pc, (void*)pc);

12 return 0;

13 }

Output:
int: 100 at 0x7ffeeb3c4a1c

float: 3.14 at 0x7ffeeb3c4a18

char: A at 0x7ffeeb3c4a17

Each type has its own pointer type

Prof. Jyotiprakash Mishra C Programming - Deck 14 6 / 26

Program 4: Pointer Size

1 #include <stdio.h>

2 int main() {

3 int *pi;

4 float *pf;

5 char *pc;

6 double *pd;

7 printf("Size of int pointer: %lu\n", sizeof(pi));

8 printf("Size of float pointer: %lu\n", sizeof(pf));

9 printf("Size of char pointer: %lu\n", sizeof(pc));

10 printf("Size of double pointer: %lu\n", sizeof(pd));

11 return 0;

12 }

Output:
Size of int pointer: 8

Size of float pointer: 8

Size of char pointer: 8

Size of double pointer: 8

All pointers same size (8 bytes on 64-bit)

Prof. Jyotiprakash Mishra C Programming - Deck 14 7 / 26

Program 5: NULL Pointer

1 #include <stdio.h>

2 int main() {

3 int *ptr = NULL;

4 printf("ptr value: %p\n", (void*)ptr);

5 if (ptr == NULL) {

6 printf("Pointer is NULL\n");

7 }

8 int x = 50;

9 ptr = &x;

10 if (ptr != NULL) {

11 printf("Pointer now points to: %d\n", *ptr);

12 }

13 return 0;

14 }

Output:
ptr value: 0x0

Pointer is NULL

Pointer now points to: 50

Always check for NULL before dereferencing

Prof. Jyotiprakash Mishra C Programming - Deck 14 8 / 26

Program 6: Swap Two Numbers Using Pointers

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 20;

4 int *p1 = &a, *p2 = &b;

5 int temp;

6 printf("Before: a=%d, b=%d\n", a, b);

7 temp = *p1;

8 *p1 = *p2;

9 *p2 = temp;

10 printf("After: a=%d, b=%d\n", a, b);

11 return 0;

12 }

Output:
Before: a=10, b=20

After: a=20, b=10

Swapping values through pointers

Prof. Jyotiprakash Mishra C Programming - Deck 14 9 / 26

Pointer Arithmetic

Pointers support arithmetic operations: +, -, ++, –

Adding 1 to a pointer moves it to the next element

Increment depends on the data type size

int *p; p++; moves p by sizeof(int) bytes

char *p; p++; moves p by sizeof(char) bytes (1 byte)

p + n moves pointer by n elements (not n bytes)

Pointer subtraction gives number of elements between pointers

Prof. Jyotiprakash Mishra C Programming - Deck 14 10 / 26

Program 7: Pointer Arithmetic - Increment

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50};

4 int *ptr = arr;

5 printf("ptr points to: %d\n", *ptr);

6 ptr ++;

7 printf("After ptr++: %d\n", *ptr);

8 ptr ++;

9 printf("After ptr++: %d\n", *ptr);

10 printf("ptr+2 points to: %d\n", *(ptr +2));

11 return 0;

12 }

Output:
ptr points to: 10

After ptr++: 20

After ptr++: 30

ptr+2 points to: 50

Pointer moves by sizeof(int) each time

Prof. Jyotiprakash Mishra C Programming - Deck 14 11 / 26

Program 8: Pointer Arithmetic - Address Difference

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {1, 2, 3, 4, 5};

4 int *p1 = &arr [0];

5 int *p2 = &arr [4];

6 printf("p1 address: %p\n", (void*)p1);

7 printf("p2 address: %p\n", (void*)p2);

8 printf("p2 - p1 = %ld elements\n",

9 p2 - p1);

10 printf("Byte difference: %ld\n",

11 (char*)p2 -(char*)p1);

12 return 0;

13 }

Output:
p1 address: 0x7ffeeb3c4a00

p2 address: 0x7ffeeb3c4a10

p2 - p1 = 4 elements

Byte difference: 16

4 elements × 4 bytes/int = 16 bytes

Prof. Jyotiprakash Mishra C Programming - Deck 14 12 / 26

Program 9: Pointer Comparison

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50};

4 int *p1 = &arr [1];

5 int *p2 = &arr [3];

6 if (p1 < p2) {

7 printf("p1 comes before p2\n");

8 }

9 if (p1 == &arr [1]) {

10 printf("p1 points to arr [1]\n");

11 }

12 printf("Distance: %ld elements\n", p2 - p1);

13 return 0;

14 }

Output:
p1 comes before p2

p1 points to arr[1]

Distance: 2 elements

Pointers can be compared for ordering

Prof. Jyotiprakash Mishra C Programming - Deck 14 13 / 26

Program 10: Traversing Array with Pointer

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50};

4 int *ptr = arr;

5 int i;

6 printf("Using pointer arithmetic :\n");

7 for (i = 0; i < 5; i++) {

8 printf("arr[%d] = %d\n", i, *(ptr + i));

9 }

10 return 0;

11 }

Output:
Using pointer arithmetic:

arr [0] = 10

arr [1] = 20

arr [2] = 30

arr [3] = 40

arr [4] = 50

*(ptr + i) is equivalent to arr[i]

Prof. Jyotiprakash Mishra C Programming - Deck 14 14 / 26

Program 11: Pointer Increment in Loop

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {5, 10, 15, 20, 25};

4 int *ptr = arr;

5 int *end = arr + 5;

6 printf("Array elements :\n");

7 while (ptr < end) {

8 printf("%d ", *ptr);

9 ptr ++;

10 }

11 printf("\n");

12 return 0;

13 }

Output:
Array elements:

5 10 15 20 25

Moving pointer through array with ++

Prof. Jyotiprakash Mishra C Programming - Deck 14 15 / 26

Program 12: Pointer to Pointer

1 #include <stdio.h>

2 int main() {

3 int x = 100;

4 int *ptr = &x;

5 int **pptr = &ptr;

6 printf("Value of x: %d\n", x);

7 printf("*ptr: %d\n", *ptr);

8 printf("**pptr: %d\n", **pptr);

9 printf("Address in ptr: %p\n",

10 (void*)ptr);

11 printf("Address in pptr: %p\n",

12 (void*)pptr);

13 return 0;

14 }

Output:
Value of x: 100

*ptr: 100

**pptr: 100

Address in ptr: 0x7ffeeb3c4a1c

Address in pptr: 0x7ffeeb3c4a10

Pointer to pointer - double indirection

Prof. Jyotiprakash Mishra C Programming - Deck 14 16 / 26

Program 13: Finding Sum Using Pointers

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50};

4 int *ptr = arr;

5 int sum = 0;

6 int i;

7 for (i = 0; i < 5; i++) {

8 sum += *ptr;

9 ptr ++;

10 }

11 printf("Sum of array: %d\n", sum);

12 return 0;

13 }

Output:
Sum of array: 150

Accumulating sum with pointer traversal

Prof. Jyotiprakash Mishra C Programming - Deck 14 17 / 26

Program 14: Finding Maximum Using Pointers

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {23, 67, 12, 89, 45};

4 int *ptr = arr;

5 int max = *ptr;

6 int i;

7 for (i = 1; i < 5; i++) {

8 ptr ++;

9 if (*ptr > max) {

10 max = *ptr;

11 }

12 }

13 printf("Maximum element: %d\n", max);

14 return 0;

15 }

Output:
Maximum element: 89

Finding max with pointer traversal

Prof. Jyotiprakash Mishra C Programming - Deck 14 18 / 26

Program 15: Reverse Array Using Pointers

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {1, 2, 3, 4, 5};

4 int *left = arr;

5 int *right = arr + 4;

6 int temp , i;

7 while (left < right) {

8 temp = *left;

9 *left = *right;

10 *right = temp;

11 left ++;

12 right --;

13 }

14 printf("Reversed: ");

15 for (i = 0; i < 5; i++) printf("%d ", arr[i]);

16 printf("\n");

17 return 0;

18 }

Output:
Reversed: 5 4 3 2 1

Two pointers moving towards each other

Prof. Jyotiprakash Mishra C Programming - Deck 14 19 / 26

Common Pointer Errors

Uninitialized pointers: Using pointer before assigning address

Dangling pointers: Pointer to memory that has been freed

Null pointer dereference: Dereferencing NULL pointer causes crash

Wild pointers: Pointer with garbage value

Memory leaks: Allocated memory not freed (covered in later deck)

Buffer overflow: Accessing beyond array bounds

Always initialize pointers before use

Check for NULL before dereferencing

Prof. Jyotiprakash Mishra C Programming - Deck 14 20 / 26

Program 16: Uninitialized Pointer Error (DON’T DO
THIS)

1 #include <stdio.h>

2 int main() {

3 int *ptr;

4 printf("This will crash or show garbage\n");

5 printf("Value: %d\n", *ptr);

6 return 0;

7 }

Correct version:
1 #include <stdio.h>

2 int main() {

3 int x = 42;

4 int *ptr = &x;

5 printf("Value: %d\n", *ptr);

6 return 0;

7 }

Output (wrong):

Segmentation fault (crash)

OR

Value: 1234567 (garbage)

Output (correct):

Value: 42

Always initialize pointers!

Prof. Jyotiprakash Mishra C Programming - Deck 14 21 / 26

Program 17: Generic Pointer (void*)

1 #include <stdio.h>

2 int main() {

3 int x = 100;

4 float f = 3.14;

5 void *ptr;

6 ptr = &x;

7 printf("int value: %d\n", *(int*)ptr);

8 ptr = &f;

9 printf("float value: %.2f\n", *(float*)ptr);

10 printf("void* can point to any type\n");

11 return 0;

12 }

Output:
int value: 100

float value: 3.14

void* can point to any type

void* must be cast before dereferencing

Prof. Jyotiprakash Mishra C Programming - Deck 14 22 / 26

Program 18: Constant Pointer vs Pointer to Constant

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 20;

4 const int *ptr1 = &a;

5 int *const ptr2 = &a;

6 printf("ptr1 points to: %d\n", *ptr1);

7 ptr1 = &b;

8 printf("ptr1 now: %d\n", *ptr1);

9 *ptr2 = 30;

10 printf("ptr2 value: %d\n", *ptr2);

11 return 0;

12 }

Output:
ptr1 points to: 10

ptr1 now: 20

ptr2 value: 30

ptr1: pointer can change, value can’t
ptr2: pointer can’t change, value can

Prof. Jyotiprakash Mishra C Programming - Deck 14 23 / 26

Program 19: Array of Pointers

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 20, c = 30;

4 int *arr [3];

5 arr [0] = &a;

6 arr [1] = &b;

7 arr [2] = &c;

8 int i;

9 for (i = 0; i < 3; i++) {

10 printf("arr[%d] points to: %d\n", i, *arr[i]);

11 }

12 return 0;

13 }

Output:
arr [0] points to: 10

arr [1] points to: 20

arr [2] points to: 30

Array where each element is a pointer

Prof. Jyotiprakash Mishra C Programming - Deck 14 24 / 26

Program 20: Pointer Indirection Levels

1 #include <stdio.h>

2 int main() {

3 int x = 42;

4 int *p1 = &x;

5 int **p2 = &p1;

6 int ***p3 = &p2;

7 printf("x = %d\n", x);

8 printf("*p1 = %d\n", *p1);

9 printf("**p2 = %d\n", **p2);

10 printf("***p3 = %d\n", ***p3);

11 ***p3 = 100;

12 printf("After change: x = %d\n", x);

13 return 0;

14 }

Output:
x = 42

*p1 = 42

**p2 = 42

***p3 = 42

After change: x = 100

Multiple levels of indirection

Prof. Jyotiprakash Mishra C Programming - Deck 14 25 / 26

Key Takeaways

Pointers store memory addresses of variables

Use & to get address, * to dereference (get value)

Pointer arithmetic moves by element size, not bytes

Always initialize pointers before use

NULL pointers should be checked before dereferencing

Pointer type must match the variable type it points to

Can have pointers to pointers (multiple indirection)

Pointers enable efficient array manipulation

Common errors: uninitialized, NULL dereference, dangling pointers

Prof. Jyotiprakash Mishra C Programming - Deck 14 26 / 26

