
C Programming - Deck 15
Pointers and Arrays

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 15 1 / 25

Arrays and Pointers Relationship

Array name is a constant pointer to the first element

arr is equivalent to &arr[0]

arr[i] is equivalent to *(arr + i)

&arr[i] is equivalent to arr + i

Array name cannot be reassigned (constant pointer)

Pointers can be reassigned to point to different elements

Pointer arithmetic works naturally with arrays

Understanding this relationship is fundamental to C programming

Prof. Jyotiprakash Mishra C Programming - Deck 15 2 / 25

Program 1: Array Name as Pointer

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50};

4 printf("arr = %p\n", (void*)arr);

5 printf("&arr [0] = %p\n", (void *)&arr [0]);

6 printf("*arr = %d\n", *arr);

7 printf("arr[0] = %d\n", arr [0]);

8 printf("*(arr +2) = %d\n", *(arr +2));

9 printf("arr[2] = %d\n", arr [2]);

10 return 0;

11 }

Output:
arr = 0x7ffeeb3c4a00

&arr[0] = 0x7ffeeb3c4a00

*arr = 10

arr [0] = 10

*(arr+2) = 30

arr [2] = 30

arr and &arr[0] are the same address

Prof. Jyotiprakash Mishra C Programming - Deck 15 3 / 25

Program 2: Pointer vs Array Name

1 #include <stdio.h>

2 int main() {

3 int arr[3] = {1, 2, 3};

4 int *ptr = arr;

5 printf("arr points to: %d\n", *arr);

6 printf("ptr points to: %d\n", *ptr);

7 ptr ++;

8 printf("After ptr++: %d\n", *ptr);

9 printf("arr still: %d\n", *arr);

10 return 0;

11 }

Output:
arr points to: 1

ptr points to: 1

After ptr++: 2

arr still: 1

ptr can be modified, arr cannot

Prof. Jyotiprakash Mishra C Programming - Deck 15 4 / 25

Program 3: Array Traversal with Pointer

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {5, 10, 15, 20, 25};

4 int *ptr;

5 printf("Using pointer :\n");

6 for (ptr = arr; ptr < arr + 5; ptr++) {

7 printf("%d ", *ptr);

8 }

9 printf("\n");

10 return 0;

11 }

Output:
Using pointer:

5 10 15 20 25

Traversing array with pointer increment

Prof. Jyotiprakash Mishra C Programming - Deck 15 5 / 25

Program 4: Pointer Notation vs Array Notation

1 #include <stdio.h>

2 int main() {

3 int arr[4] = {100, 200, 300, 400};

4 int *ptr = arr;

5 int i;

6 printf("Array notation :\n");

7 for (i = 0; i < 4; i++) {

8 printf("arr[%d] = %d\n", i, arr[i]);

9 }

10 printf("Pointer notation :\n");

11 for (i = 0; i < 4; i++) {

12 printf("*(ptr+%d) = %d\n", i, *(ptr+i));

13 }

14 return 0;

15 }

Output:
Array notation:

arr [0] = 100

arr [1] = 200

arr [2] = 300

arr [3] = 400

Pointer notation:

*(ptr+0) = 100

*(ptr+1) = 200

*(ptr+2) = 300

*(ptr+3) = 400

Prof. Jyotiprakash Mishra C Programming - Deck 15 6 / 25

Program 5: Sum of Array Using Pointer

1 #include <stdio.h>

2 int main() {

3 int arr[6] = {5, 10, 15, 20, 25, 30};

4 int *ptr = arr;

5 int sum = 0;

6 int i;

7 for (i = 0; i < 6; i++) {

8 sum += *(ptr + i);

9 }

10 printf("Sum = %d\n", sum);

11 return 0;

12 }

Output:
Sum = 105

Computing sum using pointer arithmetic

Prof. Jyotiprakash Mishra C Programming - Deck 15 7 / 25

Program 6: Reverse Array Using Pointers

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {1, 2, 3, 4, 5};

4 int *left = arr;

5 int *right = arr + 4;

6 int temp , i;

7 while (left < right) {

8 temp = *left;

9 *left = *right;

10 *right = temp;

11 left ++;

12 right --;

13 }

14 for (i = 0; i < 5; i++) {

15 printf("%d ", arr[i]);

16 }

17 printf("\n");

18 return 0;

19 }

Output:
5 4 3 2 1

Two-pointer approach to reverse

Prof. Jyotiprakash Mishra C Programming - Deck 15 8 / 25

Program 7: Find Maximum Using Pointer

1 #include <stdio.h>

2 int main() {

3 int arr[6] = {23, 67, 12, 89, 45, 34};

4 int *ptr = arr;

5 int max = *ptr;

6 int i;

7 for (i = 1; i < 6; i++) {

8 if (*(ptr + i) > max) {

9 max = *(ptr + i);

10 }

11 }

12 printf("Maximum = %d\n", max);

13 return 0;

14 }

Output:
Maximum = 89

Finding max with pointer arithmetic

Prof. Jyotiprakash Mishra C Programming - Deck 15 9 / 25

Program 8: Copy Array Using Pointers

1 #include <stdio.h>

2 int main() {

3 int src[5] = {10, 20, 30, 40, 50};

4 int dest [5];

5 int *ps = src;

6 int *pd = dest;

7 int i;

8 for (i = 0; i < 5; i++) {

9 *pd = *ps;

10 ps++;

11 pd++;

12 }

13 printf("Copied array: ");

14 for (i = 0; i < 5; i++) {

15 printf("%d ", dest[i]);

16 }

17 printf("\n");

18 return 0;

19 }

Output:
Copied array: 10 20 30 40 50

Copying elements with two pointers

Prof. Jyotiprakash Mishra C Programming - Deck 15 10 / 25

Array of Pointers

Array where each element is a pointer

Syntax: int *arr[5]; - array of 5 integer pointers

Each element can point to different variables

Useful for managing multiple arrays or strings

Different from pointer to array: int (*ptr)[5];

Array of pointers: int *arr[5] - [] has higher precedence

Pointer to array: int (*ptr)[5] - * is bound first by ()

Prof. Jyotiprakash Mishra C Programming - Deck 15 11 / 25

Program 9: Array of Pointers

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 20, c = 30;

4 int *arr [3];

5 arr [0] = &a;

6 arr [1] = &b;

7 arr [2] = &c;

8 int i;

9 for (i = 0; i < 3; i++) {

10 printf("arr[%d] = %d\n", i, *arr[i]);

11 }

12 return 0;

13 }

Output:
arr [0] = 10

arr [1] = 20

arr [2] = 30

Each array element points to a variable

Prof. Jyotiprakash Mishra C Programming - Deck 15 12 / 25

Program 10: Modifying Through Array of Pointers

1 #include <stdio.h>

2 int main() {

3 int x = 5, y = 10, z = 15;

4 int *ptrs [3] = {&x, &y, &z};

5 int i;

6 printf("Before :\n");

7 for (i = 0; i < 3; i++) {

8 printf("%d ", *ptrs[i]);

9 }

10 for (i = 0; i < 3; i++) {

11 *ptrs[i] *= 2;

12 }

13 printf("\nAfter doubling :\n");

14 printf("x=%d, y=%d, z=%d\n", x, y, z);

15 return 0;

16 }

Output:
Before:

5 10 15

After doubling:

x=10, y=20, z=30

Modifying values through pointer array

Prof. Jyotiprakash Mishra C Programming - Deck 15 13 / 25

Pointer to Array

Single pointer that points to an entire array

Syntax: int (*ptr)[5]; - pointer to array of 5 ints

Parentheses are essential: (*ptr)

Without parentheses: int *ptr[5] is array of pointers

Dereferencing gives the entire array

*ptr gives first element address

**ptr or (*ptr)[0] gives first element value

Useful for 2D arrays and functions

Prof. Jyotiprakash Mishra C Programming - Deck 15 14 / 25

Program 11: Pointer to Array

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50};

4 int (*ptr)[5] = &arr;

5 int i;

6 printf("Using pointer to array:\n");

7 for (i = 0; i < 5; i++) {

8 printf("(*ptr)[%d] = %d\n",

9 i, (*ptr)[i]);

10 }

11 return 0;

12 }

Output:
Using pointer to array:

(*ptr)[0] = 10

(*ptr)[1] = 20

(*ptr)[2] = 30

(*ptr)[3] = 40

(*ptr)[4] = 50

ptr points to entire array

Prof. Jyotiprakash Mishra C Programming - Deck 15 15 / 25

Program 12: Array of Pointers vs Pointer to Array

1 #include <stdio.h>

2 int main() {

3 int arr[3] = {1, 2, 3};

4 int *ap[3];

5 int (*pa)[3] = &arr;

6 int i;

7 for (i = 0; i < 3; i++) {

8 ap[i] = &arr[i];

9 }

10 printf("Array of pointers :\n");

11 for (i = 0; i < 3; i++) {

12 printf("%d ", *ap[i]);

13 }

14 printf("\nPointer to array:\n");

15 for (i = 0; i < 3; i++) {

16 printf("%d ", (*pa)[i]);

17 }

18 printf("\n");

19 return 0;

20 }

Output:
Array of pointers:

1 2 3

Pointer to array:

1 2 3

Different syntax, same result here

Prof. Jyotiprakash Mishra C Programming - Deck 15 16 / 25

Program 13: Pointer Arithmetic with Arrays

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50};

4 int *p1 = arr;

5 int *p2 = arr + 3;

6 printf("*p1 = %d\n", *p1);

7 printf("*p2 = %d\n", *p2);

8 printf("p2 - p1 = %ld\n", p2 - p1);

9 printf("*(p1 + 2) = %d\n", *(p1 + 2));

10 printf("p2[-1] = %d\n", p2[-1]);

11 return 0;

12 }

Output:
*p1 = 10

*p2 = 40

p2 - p1 = 3

*(p1 + 2) = 30

p2[-1] = 30

Negative indexing with pointers

Prof. Jyotiprakash Mishra C Programming - Deck 15 17 / 25

Program 14: Search Element Using Pointer

1 #include <stdio.h>

2 int main() {

3 int arr[6] = {12, 45, 23, 67, 34, 89};

4 int *ptr = arr;

5 int key = 67;

6 int found = 0;

7 int i;

8 for (i = 0; i < 6; i++) {

9 if (*(ptr + i) == key) {

10 printf("Found %d at index %d\n",

11 key , i);

12 found = 1;

13 break;

14 }

15 }

16 if (!found) {

17 printf("%d not found\n", key);

18 }

19 return 0;

20 }

Output:
Found 67 at index 3

Linear search using pointer

Prof. Jyotiprakash Mishra C Programming - Deck 15 18 / 25

Program 15: Count Even Numbers Using Pointer

1 #include <stdio.h>

2 int main() {

3 int arr[8] = {12, 15, 18, 21, 24, 27, 30, 33};

4 int *ptr = arr;

5 int count = 0;

6 int i;

7 for (i = 0; i < 8; i++) {

8 if (*(ptr + i) % 2 == 0) {

9 count ++;

10 }

11 }

12 printf("Even numbers count: %d\n", count);

13 return 0;

14 }

Output:
Even numbers count: 4

Counting with condition check

Prof. Jyotiprakash Mishra C Programming - Deck 15 19 / 25

Program 16: Multiply Array Elements by Scalar

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {2, 4, 6, 8, 10};

4 int *ptr = arr;

5 int scalar = 3;

6 int i;

7 printf("Before: ");

8 for (i = 0; i < 5; i++) {

9 printf("%d ", *(ptr + i));

10 }

11 for (i = 0; i < 5; i++) {

12 *(ptr + i) *= scalar;

13 }

14 printf("\nAfter multiply by %d: ", scalar);

15 for (i = 0; i < 5; i++) {

16 printf("%d ", arr[i]);

17 }

18 printf("\n");

19 return 0;

20 }

Output:
Before: 2 4 6 8 10

After multiply by 3: 6 12 18 24 30

Scalar multiplication in-place

Prof. Jyotiprakash Mishra C Programming - Deck 15 20 / 25

Program 17: Compare Two Arrays Using Pointers

1 #include <stdio.h>

2 int main() {

3 int arr1 [5] = {1, 2, 3, 4, 5};

4 int arr2 [5] = {1, 2, 3, 4, 5};

5 int *p1 = arr1;

6 int *p2 = arr2;

7 int equal = 1;

8 int i;

9 for (i = 0; i < 5; i++) {

10 if (*(p1 + i) != *(p2 + i)) {

11 equal = 0;

12 break;

13 }

14 }

15 if (equal) {

16 printf("Arrays are equal\n");

17 } else {

18 printf("Arrays are not equal\n");

19 }

20 return 0;

21 }

Output:
Arrays are equal

Element-wise comparison

Prof. Jyotiprakash Mishra C Programming - Deck 15 21 / 25

Program 18: Rotate Array Left Using Pointers

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50};

4 int *ptr = arr;

5 int temp = *ptr;

6 int i;

7 for (i = 0; i < 4; i++) {

8 *(ptr + i) = *(ptr + i + 1);

9 }

10 *(ptr + 4) = temp;

11 printf("After left rotation: ");

12 for (i = 0; i < 5; i++) {

13 printf("%d ", arr[i]);

14 }

15 printf("\n");

16 return 0;

17 }

Output:
After left rotation: 20 30 40 50 10

Shifting elements left by one

Prof. Jyotiprakash Mishra C Programming - Deck 15 22 / 25

Program 19: Merge Two Arrays Using Pointers

1 #include <stdio.h>

2 int main() {

3 int arr1 [3] = {1, 2, 3};

4 int arr2 [3] = {4, 5, 6};

5 int merged [6];

6 int *p1 = arr1;

7 int *p2 = arr2;

8 int *pm = merged;

9 int i;

10 for (i = 0; i < 3; i++) {

11 *(pm + i) = *(p1 + i);

12 }

13 for (i = 0; i < 3; i++) {

14 *(pm + 3 + i) = *(p2 + i);

15 }

16 printf("Merged: ");

17 for (i = 0; i < 6; i++) {

18 printf("%d ", merged[i]);

19 }

20 printf("\n");

21 return 0;

22 }

Output:
Merged: 1 2 3 4 5 6

Combining two arrays into one

Prof. Jyotiprakash Mishra C Programming - Deck 15 23 / 25

Program 20: Print Array in Reverse Using Pointer

1 #include <stdio.h>

2 int main() {

3 int arr[6] = {10, 20, 30, 40, 50, 60};

4 int *ptr = arr + 5;

5 printf("Reverse order: ");

6 while (ptr >= arr) {

7 printf("%d ", *ptr);

8 ptr --;

9 }

10 printf("\n");

11 return 0;

12 }

Output:
Reverse order: 60 50 40 30 20 10

Traversing backward with pointer

Prof. Jyotiprakash Mishra C Programming - Deck 15 24 / 25

Key Takeaways

Array name is a constant pointer to first element

arr[i] and *(arr + i) are equivalent

Pointers can traverse arrays efficiently

Array of pointers: int *arr[n] - each element is a pointer

Pointer to array: int (*ptr)[n] - points to entire array

Pointer arithmetic simplifies array operations

Can use negative indexing with pointers: ptr[-1]

Understanding arrays and pointers is crucial for C mastery

Prof. Jyotiprakash Mishra C Programming - Deck 15 25 / 25

