C Programming - Deck 15

Pointers and Arrays

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 15

Arrays and Pointers Relationship

Array name is a constant pointer to the first element
arr is equivalent to &arr[0]

arr[i] is equivalent to *(arr + i)

&arr[i] is equivalent to arr + i

Array name cannot be reassigned (constant pointer)
Pointers can be reassigned to point to different elements

Pointer arithmetic works naturally with arrays

Understanding this relationship is fundamental to C programming

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 1: Array Name as

Output:

arr = Ox7ffeeb3c4al0
&arr [0] = O0x7ffeeb3c4al0

1 #include <stdio.h>
2 int main() {
3 int arr[5] = {10, 20, 30, 40, 50};

4 printf ("arr = %p\n", (void*)arr); rarr = 10

5 printf ("&arr [0] = %p\n", (void*)&arr[0]); _

6 printf ("*arr = %d\n", *arr); azx (0] = iO

7 printf ("arr [0] = %d\n", arr[0]); Closzcdl) © &

8 printf ("*(arr+2) = %d\n", *(arr+2)); o Pl = &0

9 printf ("arr [2] = %d\n", arr([2]);

10 return 0; arr and &arr|[0] are the same address
11 %}

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 2: Pointer vs Array Name

Output:

arr points to: 1
ptr points to: 1

1 #include <stdio.h>
2 int main() {
3 int arr[3] = {1, 2, 3};

4 int *ptr = arr; After ptr++: 2

5 printf ("arr points to: %d\n", *arr); P :

6 printf ("ptr points to: %d\n", *ptr); 5 SBaLLe 8

7 ptr++;

8 printf ("After ptr++: %d\n", *ptr); ptr can be modified, arr cannot
9 printf ("arr still: %d\n", *arr);

10 return 0;

11 %}

yotiprakash Mishra i Deck 15

Program 3: Array Traversal with Pointer

Output:

Using pointer:
5 10 15 20 25

1 #include <stdio.h>
2 int main() {
3 int arr[6] = {5, 10, 15, 20, 25};

4 int *ptr;

5 printf ("Using pointer:\n");

6 for (ptr = arr; ptr < arr + 5; ptr++) { Traversing array with pointer increment
7 printf ("%d ", *ptr);

8

9 printf ("\n");

10 return 0;

11 %}

yotiprakash Mishra C Programming - Deck 15

Program 4: Pointer Notation vs Array Notation

Output:

Array notation:
arr [0] = 100

arr [1] = 200

arr [2] = 300

arr [3] = 400
Pointer notation:
*(ptr+0) = 100
*(ptr+1) = 200
*(ptr+2) = 300
*(ptr+3) = 400

1 #include <stdio.h>

2 int main() {

3 int arr[4] = {100, 200, 300, 400};

4 int *ptr = arr;

5 int i;

6 printf ("Array notation:\n");

7 for (i = 0; i < 4; i++) {

8 printf ("arr[%d] = %d\n", i, arr[il);

10 printf ("Pointer notation:\n");
11 for (i = 0; i < 4; i++) {

12 printf ("*(ptr+%d) = %d\n", i, *(ptr+i));
13

14 return 0;

15 %

yotiprakash Mishra

Program 5: Sum of Array Using Pointer

1 #include <stdio.h> OUtpl"t'
2 int main() {

3 int arr(6] = {5, 10, 15, 20, 25, 30}; EUngRrob
4 int *ptr = arr;

5 int sum = 0; Computing sum using pointer arithmetic
6 int i;

7 for (i = 0; i < 6; i++) {

8 sum += *(ptr + i);

9 }

10 printf ("Sum = %d\n", sum);

11 return 0;

12 3

yotiprakash Mishra C Programming - Deck 15

Program 6: Reverse Array Using Pointers

1 #include <stdio.h> OUtPUt'
2 int main() {
3 int arr([56] = {1, 2, 3, 4, 5}; SRIRIRZT
int *left = arr;
int *right = arr + 4; Two-pointer approach to reverse

while (left < right) {

4

5

6 int temp, 1ij;

7

8 temp = *left;

9 *left = xright;

10 *right = temp;

11 left++;

12 right--;

13 ¥

14 for (i = 0; i < 5; i++) {
15 printf("%d ", arr[il);
16 }

17 printf ("\n");

18 return O0;

19 }

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 7: Find Maximum Using Pointer

1 #include <stdio.h> OUtPUt'

2 int main() { Maximum = 89
3 int arr[6] = {23, 67, 12, 89, 45, 34};

4 int *ptr = arr;

5 int max = *ptr; Finding max with pointer arithmetic
6 int i

7 for (i = 1; i < 6; i++) {

8 if (x(ptr + i) > max) {

9 max = *(ptr + i);

10 }

11 }

12 printf ("Maximum = %d\n", max);

13 return O0;

14 }

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 8: Copy Array Using Pointers

Output:

Copied array: 10 20 30 40 50

1 #include <stdio.h>
2 int main() {
3 int src[6] = {10, 20, 30, 40, 50};

4 int dest[5];

5 int *ps = src; Copying elements with two pointers
6 int *pd = dest;

7 int i;

8 for (i = 0; i < 5; i++) {

9 *pd = *ps;

10 ps++;

11 pd++;

12 ¥

13 printf ("Copied array: ");
14 for (i = 0; i < 5; i++) {

15 printf ("%d ", dest[il);
16 }

17 printf ("\n");

18 return O0;

19 ¥

yotiprakash Mishra i Deck 15

Array of Pointers

Array where each element is a pointer
Syntax: int *arr[5]; - array of 5 integer pointers

Each element can point to different variables

Different from pointer to array: int (*ptr) [5];

°

°

°

@ Useful for managing multiple arrays or strings

°

@ Array of pointers: int *arr[5] - [] has higher precedence
°

Pointer to array: int (*ptr) [5] - * is bound first by ()

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 9: Array of Pointers

Output:

arr [0] = 10
arr[1] = 20
arr[2] = 30

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 20, c = 30;
4 int *arr[3];

5 arr [0] = &a;

6 arr [1] = &b;
7
8

arr [2] = &c; Each array element points to a variable
int i;

9 for (i = 0; i < 3; i++) {

10 printf ("arr[%d] = %d\n", i, *arr[il);

11

12 return 0;

13}

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 10: Modifying Through Array of Pointers

1 #include <stdio.h>

Output:
2 int main() {

. _ _ . Before:
3 int x = 5, y 10, z 15; 5 10 15

tex, &y, #z}; After doubling:
x=10, y=20, z=30

4 int *ptrs[3]

5 int 1i;

6 printf ("Before:\n");
7 for (i = 0; i < 3; i++) {
8

printf ("%d ", *ptrsl[il); Modifying values through pointer array
9
10 for (i = 0; i < 3; i++) {
11 *ptrs[i] *= 2;
12 }

13 printf ("\nAfter doubling:\n");
14 printf ("x=%d, y=%d, z=4d\n", x, y, 2);
15 return O;

yotiprakash Mishra C Programming - Deck 15

Pointer to Array

Single pointer that points to an entire array

Syntax: int (*ptr) [5]; - pointer to array of 5 ints
Parentheses are essential: (*xptr)

Without parentheses: int *ptr[5] is array of pointers
Dereferencing gives the entire array

*ptr gives first element address

*x*ptr or (xptr) [0] gives first element value

Useful for 2D arrays and functions

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 11: Pointer to Array

Output:

Using pointer to array:
(xptr) [0] = 10
(xptr)[1] = 20
(xptr)[2] = 30
(xptr)[3] = 40
(xptr) [4] = 50

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50};
4 int (*ptr)[5] = &arr;

5 int i

6 printf ("Using pointer to array:\n");
7 for (i = 0; i < 5; i++) {

8 printf (" (xptr) [%d] = %d\n",

9 i, (xptr)[il);

10 } ptr points to entire array
11 return O;

12 3

Prof. Jyotiprakash Mishra C Programming

Program 12: Array of Pointers vs Pointer to Array

1 #include <stdio.h> OUtPUt'
2 int main() { A f int 8
3 int arr[3] = {1, 2, 3}; EUAY O POeeRes
X 123
4 int *ap[3]; Point t .
5 int (*Pa)[s] = &arr; oilnter 0 array:
: : 123
6 int i;
7 for (i = 0; i < 3; i++) {
8 apl[i] = &arr[il; Different syntax, same result here

10 printf ("Array of pointers:\n");
11 for (i = 0; i < 3; i++) {

12 printf ("%d ", *apl[il);

13 }

14 printf ("\nPointer to array:\n");
15 for (i = 0; i < 3; i++) {

16 printf ("%d ", (*pa)l[il);
17 }

18 printf ("\n");

19 return 0;

20 3}

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 13: Pointer Arithmetic with Arrays

1 #include <stdio.h> Output:

2 int main() { ~

3 int arr[5] = {10, 20, 30, 40, 50}; *pl = 10
*p2 = 40

int *pl = arr; p2 - pl = 3

*(pl + 2) = 30
p2[-1] = 30

4
5 int *p2 = arr + 3;

6 printf ("*pl = %d\n", *pl);

7 printf ("#p2 = %d\n", *p2);

8 printf("p2 - pl = %1ld\n", p2 - pl);

9 printf ("x(pl + 2) = %d\n", *(pl + 2)); Negative indexing with pointers
10 printf ("p2[-1] = %d\n", p2[-11);

11 return 0;

12}

yotiprakash Mishra C Programming - Deck 15

Program 14: Search Element Using Pointer

Output:

Found 67 at index 3

1 #include <stdio.h>
2 int main() {
3 int arr[6] = {12, 45, 23, 67, 34, 89};

4 int *ptr = arr;

5 int key = 67; Linear search using pointer
6 int found = 0;

7 int i;

8 for (i = 0; i < 6; i++) {

9 if (x(ptr + i) == key) {

10 printf ("Found %d at index %d\n",
11 key, i);

12 found = 1;

13 break;

14

15 }

16 if (!found) {

17 printf ("%d not found\n", key);

18 }

19 return 0;

20 3}

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 15: Count Even Numbers Using Pointer

Output:

1 #include <stdio.h>

2 int main() { E b t: 4
3 int arr[8] = {12, 15, 18, 21, 24, 27, 30, 33, °% Rumpers count:

4 int *ptr = arr;

5 int count = 0; Counting with condition check
6 int i

7 for (i = 0; i < 8; i++) {

8 if (x(ptr + i) % 2 == 0) {

9 count++;

10 }

11 ¥

12 printf ("Even numbers count: %d\n", count);
13 return O0;

14 }

yotiprakash Mishra C Programming - Deck 15

: Multiply Array Elements by Scalar

Output:

Before: 2 4 6 8 10
After multiply by 3: 6 12 18 24 30

1 #include <stdio.h>
2 int main() {
3 int arr[6] = {2, 4, 6, 8, 10};

4 int *ptr = arr;

5 int scalar = 3;

6 int i; Scalar multiplication in-place
7 printf ("Before: ");

8 for (i = 0; i < 5; i++) {

9 printf ("%d ", *(ptr + i));

10 }

11 for (i = 0; i < 5; i++) {

12 *(ptr + i) *= scalar;

13

14 printf ("\nAfter multiply by %d: ", scalar);
15 for (i = 0; i < 5; i++) {

16 printf ("%d ", arr[il);

17 }

18 printf ("\n");

19 return 0;

20 ¥

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 17: Compare Two Arrays Using Pointers

Output:

Arrays are equal

1 #include <stdio.h>

2 int main() {

3 int arr1([5] = {1, 2, 3, 4, 5};
int arr2[5] = {1, 2, 3, 4

4 5};

5 int *pl = arril; Element-wise comparison
6 int *p2 = arr2;

7 int equal = 1;

8 int i;

9 for (i = 0; i < 5; i++) {

10 if (#(pl + i) != *(p2 + i)) {

11 equal = 0;

12 break;

13 ¥

14 }

15 if (equal) {

16 printf ("Arrays are equall\n");

17 } else {

18 printf ("Arrays are not equal\n");
19

20 return 0;

21 %}

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 18: Rotate Array Left Using Pointers

Output:

After left rotation: 20 30 40 50 10

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50};
4 int *ptr = arr;
5 int temp = *ptr; Shifting elements left by one
6 int ij;

7 for (i = 0; i < 4; i++) {

8 *(ptr + i) = x(ptr + i + 1);

9 }

10 *(ptr + 4) = temp;

11 printf ("After left rotation: ");

12 for (i = 0; i < 5; i++) {

13 printf ("%d ", arr[il);
14

15 printf ("\n");

16 return 0;

17 ¥

yotiprakash Mishra C Programming - Deck 15

: Merge Two Arrays Using Pointers

Output:

1 #include <stdio.h>

5 X
int main() { Merged: 1 2 3 4 5 6

3 int arr1[3] = {1, 2, 3};

4 int arr2[3] = {4, 5, 6};

5 int merged[6]; Combining two arrays into one
6 int *pl = arril;

7 int *p2 = arr2;

8 int *pm = merged;

9 int i

10 for (i = 0; i < 3; i++) {
11 *(pm + i) = *x(pl + i);

12 }

13 for (i = 0; i < 3; i++) {
14 #*(pm + 3 + i) = *(p2 + i);

16 printf ("Merged: ");
17 for (i = 0; i < 6; i++) {

18 printf ("%d ", merged[il);
19 }

20 printf ("\n");

21 return O;

22}

Prof. Jyotiprakash Mishra C Programming - Deck 15

Program 20: Print Array in Reverse Using Pointer

1 #include <stdio.h>

Output:

2 int main() {

int arr[6] = {10, 20, 30, 40, 50, 60}; Reverse order: 60 50 40 30 20 10

int *ptr = arr + 5;
printf ("Reverse order: "); Traversing backward with pointer
while (ptr >= arr) {
printf ("%d ", *ptr);
ptr--;
}
printf ("\n");
return 0;

yotiprakash Mishra C Programming - Deck 15

Key Takeaways

Array name is a constant pointer to first element

arr[i] and *(arr + i) are equivalent

Pointers can traverse arrays efficiently

Array of pointers: int *arr[n] - each element is a pointer
Pointer to array: int (*ptr) [n] - points to entire array
Pointer arithmetic simplifies array operations

Can use negative indexing with pointers: ptr[-1]

Understanding arrays and pointers is crucial for C mastery

Prof. Jyotiprakash Mishra C Programming - Deck 15

