
C Programming - Deck 16
Pointers and Strings

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 16 1 / 24

Strings and Pointers

String is an array of characters ending with null terminator

Character array: char str[10] = "Hello";

String pointer: char *ptr = "Hello";

Array stores string in modifiable memory

Pointer to string literal points to read-only memory

String name is a pointer to first character

Pointer arithmetic works with strings

Understanding this is crucial for string manipulation

Prof. Jyotiprakash Mishra C Programming - Deck 16 2 / 24

Program 1: String Pointer vs Character Array

1 #include <stdio.h>

2 int main() {

3 char arr[] = "Hello";

4 char *ptr = "World";

5 printf("Array: %s\n", arr);

6 printf("Pointer: %s\n", ptr);

7 arr [0] = ’h’;

8 printf("Modified array: %s\n", arr);

9 printf("arr address: %p\n", (void*)arr);

10 printf("ptr address: %p\n", (void*)ptr);

11 return 0;

12 }

Output:
Array: Hello

Pointer: World

Modified array: hello

arr address: 0x7ffeeb3c4a10

ptr address: 0x10a8e4f28

Array is modifiable, pointer to literal is not

Prof. Jyotiprakash Mishra C Programming - Deck 16 3 / 24

Program 2: Traversing String with Pointer

1 #include <stdio.h>

2 int main() {

3 char str[] = "Hello";

4 char *ptr = str;

5 printf("Characters :\n");

6 while (*ptr != ’\0’) {

7 printf("%c ", *ptr);

8 ptr ++;

9 }

10 printf("\n");

11 return 0;

12 }

Output:
Characters:

H e l l o

Moving pointer through string

Prof. Jyotiprakash Mishra C Programming - Deck 16 4 / 24

Program 3: String Length Using Pointer

1 #include <stdio.h>

2 int main() {

3 char str[] = "Programming";

4 char *ptr = str;

5 int length = 0;

6 while (*ptr != ’\0’) {

7 length ++;

8 ptr ++;

9 }

10 printf("Length of ’%s ’: %d\n", str , length);

11 return 0;

12 }

Output:
Length of ’Programming ’: 11

Counting characters until null

Prof. Jyotiprakash Mishra C Programming - Deck 16 5 / 24

Program 4: String Copy Using Pointers

1 #include <stdio.h>

2 int main() {

3 char src[] = "Hello";

4 char dest [20];

5 char *ps = src;

6 char *pd = dest;

7 while (*ps != ’\0’) {

8 *pd = *ps;

9 ps++;

10 pd++;

11 }

12 *pd = ’\0’;

13 printf("Source: %s\n", src);

14 printf("Destination: %s\n", dest);

15 return 0;

16 }

Output:
Source: Hello

Destination: Hello

Manual string copy with pointers

Prof. Jyotiprakash Mishra C Programming - Deck 16 6 / 24

Program 5: String Concatenation Using Pointers

1 #include <stdio.h>

2 int main() {

3 char dest [20] = "Hello";

4 char src[] = " World";

5 char *pd = dest;

6 char *ps = src;

7 while (*pd != ’\0’) pd++;

8 while (*ps != ’\0’) {

9 *pd = *ps;

10 pd++;

11 ps++;

12 }

13 *pd = ’\0’;

14 printf("Result: %s\n", dest);

15 return 0;

16 }

Output:
Result: Hello World

Appending one string to another

Prof. Jyotiprakash Mishra C Programming - Deck 16 7 / 24

Program 6: String Comparison Using Pointers

1 #include <stdio.h>

2 int main() {

3 char str1[] = "Hello";

4 char str2[] = "Hello";

5 char *p1 = str1;

6 char *p2 = str2;

7 while (*p1 != ’\0’ && *p2 != ’\0’) {

8 if (*p1 != *p2) break;

9 p1++;

10 p2++;

11 }

12 if (*p1 == *p2) {

13 printf("Strings are equal\n");

14 } else {

15 printf("Strings are not equal\n");

16 }

17 return 0;

18 }

Output:
Strings are equal

Character-by-character comparison

Prof. Jyotiprakash Mishra C Programming - Deck 16 8 / 24

Program 7: Reverse String Using Pointers

1 #include <stdio.h>

2 int main() {

3 char str[] = "Hello";

4 char *left = str;

5 char *right = str;

6 char temp;

7 while (*right != ’\0’) right ++;

8 right --;

9 while (left < right) {

10 temp = *left;

11 *left = *right;

12 *right = temp;

13 left ++;

14 right --;

15 }

16 printf("Reversed: %s\n", str);

17 return 0;

18 }

Output:
Reversed: olleH

Two-pointer approach for reversal

Prof. Jyotiprakash Mishra C Programming - Deck 16 9 / 24

Program 8: Count Vowels Using Pointer

1 #include <stdio.h>

2 int main() {

3 char str[] = "Programming";

4 char *ptr = str;

5 int count = 0;

6 while (*ptr != ’\0’) {

7 char ch = *ptr;

8 if (ch==’a’||ch==’e’||ch==’i’||

9 ch==’o’||ch==’u’||ch==’A’||

10 ch==’E’||ch==’I’||ch==’O’||

11 ch==’U’) {

12 count ++;

13 }

14 ptr ++;

15 }

16 printf("Vowels in ’%s ’: %d\n", str , count);

17 return 0;

18 }

Output:
Vowels in ’Programming ’: 3

Checking each character for vowel

Prof. Jyotiprakash Mishra C Programming - Deck 16 10 / 24

Program 9: Convert to Uppercase Using Pointer

1 #include <stdio.h>

2 int main() {

3 char str[] = "hello world";

4 char *ptr = str;

5 printf("Before: %s\n", str);

6 while (*ptr != ’\0’) {

7 if (*ptr >= ’a’ && *ptr <= ’z’) {

8 *ptr = *ptr - 32;

9 }

10 ptr ++;

11 }

12 printf("After: %s\n", str);

13 return 0;

14 }

Output:
Before: hello world

After: HELLO WORLD

Converting lowercase to uppercase

Prof. Jyotiprakash Mishra C Programming - Deck 16 11 / 24

Array of String Pointers

Array where each element points to a string

Syntax: char *arr[5];

Each pointer can point to different string literals

Useful for managing multiple strings

Common for command-line arguments: char *argv[]

Strings can have different lengths

Memory efficient for read-only strings

Example: char *days[] = {"Mon", "Tue", "Wed"};

Prof. Jyotiprakash Mishra C Programming - Deck 16 12 / 24

Program 10: Array of String Pointers

1 #include <stdio.h>

2 int main() {

3 char *fruits [5] = {

4 "Apple",

5 "Banana",

6 "Cherry",

7 "Date",

8 "Elderberry"

9 };

10 int i;

11 printf("Fruits :\n");

12 for (i = 0; i < 5; i++) {

13 printf("%d. %s\n", i+1, fruits[i]);

14 }

15 return 0;

16 }

Output:
Fruits:

1. Apple

2. Banana

3. Cherry

4. Date

5. Elderberry

Each pointer points to a string literal

Prof. Jyotiprakash Mishra C Programming - Deck 16 13 / 24

Program 11: Printing Strings with Pointers

1 #include <stdio.h>

2 int main() {

3 char *days[] = {

4 "Monday",

5 "Tuesday",

6 "Wednesday",

7 "Thursday",

8 "Friday"

9 };

10 char **ptr = days;

11 int i;

12 for (i = 0; i < 5; i++) {

13 printf("%s\n", *(ptr + i));

14 }

15 return 0;

16 }

Output:
Monday

Tuesday

Wednesday

Thursday

Friday

Pointer to pointer for string array

Prof. Jyotiprakash Mishra C Programming - Deck 16 14 / 24

Program 12: Find Longest String

1 #include <stdio.h>

2 int main() {

3 char *words[] = {"Hi", "Hello", "Hey", "Greetings"};

4 int i, len , maxLen = 0;

5 int maxIndex = 0;

6 char *ptr;

7 for (i = 0; i < 4; i++) {

8 len = 0;

9 ptr = words[i];

10 while (*ptr != ’\0’) {

11 len ++;

12 ptr ++;

13 }

14 if (len > maxLen) {

15 maxLen = len;

16 maxIndex = i;

17 }

18 }

19 printf("Longest: %s (%d)\n",

20 words[maxIndex], maxLen);

21 return 0;

22 }

Output:
Longest: Greetings (9)

Finding longest string in array

Prof. Jyotiprakash Mishra C Programming - Deck 16 15 / 24

Program 13: Search String in Array

1 #include <stdio.h>

2 int main() {

3 char *colors [] = {"Red", "Green", "Blue", "Yellow"};

4 char *search = "Blue";

5 int found = 0;

6 int i;

7 char *p1, *p2;

8 for (i = 0; i < 4; i++) {

9 p1 = colors[i];

10 p2 = search;

11 while (*p1 && *p2 && *p1 == *p2) {

12 p1++;

13 p2++;

14 }

15 if (*p1 == *p2) {

16 printf("Found ’%s’ at index %d\n", search , i);

17 found = 1;

18 break;

19 }

20 }

21 if (!found) printf("Not found\n");

22 return 0;

23 }

Output:
Found ’Blue ’ at index 2

Searching for specific string

Prof. Jyotiprakash Mishra C Programming - Deck 16 16 / 24

Program 14: Count Total Characters in String Array

1 #include <stdio.h>

2 int main() {

3 char *words[] = {"C", "is", "powerful"};

4 int total = 0;

5 int i;

6 char *ptr;

7 for (i = 0; i < 3; i++) {

8 ptr = words[i];

9 while (*ptr != ’\0’) {

10 total ++;

11 ptr ++;

12 }

13 }

14 printf("Total characters: %d\n", total);

15 return 0;

16 }

Output:
Total characters: 12

Summing lengths of all strings

Prof. Jyotiprakash Mishra C Programming - Deck 16 17 / 24

Program 15: Pointer Arithmetic with Strings

1 #include <stdio.h>

2 int main() {

3 char str[] = "Hello World";

4 char *ptr = str;

5 printf("Full string: %s\n", ptr);

6 printf("From index 6: %s\n", ptr + 6);

7 printf("Character at 0: %c\n", *ptr);

8 printf("Character at 4: %c\n", *(ptr + 4));

9 printf("Third char: %c\n", ptr [2]);

10 return 0;

11 }

Output:
Full string: Hello World

From index 6: World

Character at 0: H

Character at 4: o

Third char: l

Using pointer arithmetic on strings

Prof. Jyotiprakash Mishra C Programming - Deck 16 18 / 24

Program 16: Remove Spaces Using Pointer

1 #include <stdio.h>

2 int main() {

3 char str[] = "H e l l o";

4 char *pr = str;

5 char *pw = str;

6 while (*pr != ’\0’) {

7 if (*pr != ’ ’) {

8 *pw = *pr;

9 pw++;

10 }

11 pr++;

12 }

13 *pw = ’\0’;

14 printf("Result: %s\n", str);

15 return 0;

16 }

Output:
Result: Hello

Two pointers: read and write

Prof. Jyotiprakash Mishra C Programming - Deck 16 19 / 24

Program 17: Check Palindrome Using Pointers

1 #include <stdio.h>

2 int main() {

3 char str[] = "madam";

4 char *left = str;

5 char *right = str;

6 int isPal = 1;

7 while (*right != ’\0’) right ++;

8 right --;

9 while (left < right) {

10 if (*left != *right) {

11 isPal = 0;

12 break;

13 }

14 left ++;

15 right --;

16 }

17 if (isPal) printf("’%s’ is palindrome\n", str);

18 else printf(" ’%s’ is not palindrome\n", str);

19 return 0;

20 }

Output:
’madam ’ is palindrome

Checking from both ends

Prof. Jyotiprakash Mishra C Programming - Deck 16 20 / 24

Program 18: Count Words Using Pointer

1 #include <stdio.h>

2 int main() {

3 char str[] = "Hello World from C";

4 char *ptr = str;

5 int words = 0;

6 int inWord = 0;

7 while (*ptr != ’\0’) {

8 if (*ptr == ’ ’) {

9 inWord = 0;

10 } else if (inWord == 0) {

11 inWord = 1;

12 words ++;

13 }

14 ptr ++;

15 }

16 printf("Word count: %d\n", words);

17 return 0;

18 }

Output:
Word count: 4

Counting words separated by spaces

Prof. Jyotiprakash Mishra C Programming - Deck 16 21 / 24

Program 19: Find Character in String

1 #include <stdio.h>

2 int main() {

3 char str[] = "Programming";

4 char ch = ’g’;

5 char *ptr = str;

6 int pos = -1;

7 int i = 0;

8 while (*ptr != ’\0’) {

9 if (*ptr == ch) {

10 pos = i;

11 break;

12 }

13 ptr ++;

14 i++;

15 }

16 if (pos != -1) {

17 printf("’%c’ found at position %d\n", ch, pos);

18 } else {

19 printf("’%c’ not found\n", ch);

20 }

21 return 0;

22 }

Output:
’g’ found at position 3

Finding first occurrence of character

Prof. Jyotiprakash Mishra C Programming - Deck 16 22 / 24

Program 20: Replace Character Using Pointer

1 #include <stdio.h>

2 int main() {

3 char str[] = "Hello World";

4 char *ptr = str;

5 char oldCh = ’o’;

6 char newCh = ’*’;

7 int count = 0;

8 printf("Before: %s\n", str);

9 while (*ptr != ’\0’) {

10 if (*ptr == oldCh) {

11 *ptr = newCh;

12 count ++;

13 }

14 ptr ++;

15 }

16 printf("After: %s\n", str);

17 printf("Replacements: %d\n", count);

18 return 0;

19 }

Output:
Before: Hello World

After: Hell* W*rld

Replacements: 2

Replacing all occurrences

Prof. Jyotiprakash Mishra C Programming - Deck 16 23 / 24

Key Takeaways

String is a character array with null terminator

String literal creates pointer to read-only memory

Character array is modifiable, string literal is not

Pointer arithmetic works naturally with strings

Array of string pointers: char *arr[]

Pointers simplify string manipulation operations

Two-pointer technique useful for many operations

Always ensure null terminator when modifying strings

Understanding pointers with strings is essential for C

Prof. Jyotiprakash Mishra C Programming - Deck 16 24 / 24

