C Programming - Deck 16

Pointers and Strings

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 16 1/24

Strings and Pointers

String is an array of characters ending with null terminator
Character array: char str[10] = "Hello";

String pointer: char *ptr = "Hello";

Array stores string in modifiable memory

Pointer to string literal points to read-only memory

String name is a pointer to first character

Pointer arithmetic works with strings

Understanding this is crucial for string manipulation

Prof. Jyotiprakash Mishra C Programming - Deck 16 2/24

Program 1: String Pointer vs Character Array

Output:

Array: Hello

Pointer: World

Modified array: hello

arr address: Ox7ffeeb3c4all
ptr address: 0x10a8e4f28

1 #include <stdio.h>

2 int main() {

3 char arr[] = "Hello";

4 char *ptr = "World";

5 printf ("Array: %s\n", arr);
6 printf ("Pointer: %s\n", ptr);
7
8

arr [0] = ’h’;
printf ("Modified array: %s\n", arr);
9 printf ("arr address: %p\n", (voidx)arr); Array is modifiable, pointer to literal is not
10 printf ("ptr address: %p\n", (void*)ptr);
11 return 0;
12}

Deck 16

yotiprakash Mishra

Program 2: Traversing String with Pointer

1 #include <stdio.h>
2 int main() {

char str[] = "Hello";

char *ptr = str;

printf ("Characters:\n");

while (kptr != ’\0’) {
printf("%c ", *ptr);
ptr++;

}

printf ("\n");
return 0;

yotiprakash Mishra

Output:

Characters:
Hello

Moving pointer through string

C Programming - Deck 16

Program 3: String Length Using Pointer

Output:

Length of ’Programming’: 11

1 #include <stdio.h>
2 int main() {

3 char str[] = "Programming";

4 char *ptr = str;

5 int length = 0; Counting characters until null
6 while (kptr != ’\0’) {

7 length++;

8 ptr++;

9 }

10 printf ("Length of ’%s’: %d\n", str, length);

11 return 0;

12}

yotiprakash Mishra C Programming - Deck 16

Program 4: String Copy Using Point

Output:

Source: Hello

1 #include <stdio.h>
2 int main() {

i Zzzi :z:i%zgj;ﬂello ’ Destination: Hello

5 char *ps = src;

6 char *pd = dest; Manual string copy with pointers
7 while (*ps != ’\0’) {

8 *pd = *ps;

9 ps++;

10 pd++;

11 }

12 *pd = ’\0’;

13 printf ("Source: %s\n", src);
14 printf ("Destination: %s\n", dest);
15 return O;

Prof. Jyotiprakash Mishra C Programming - Deck 16

Program 5: String Concatenation Using Pointers

Output:

Result: Hello World

1 #include <stdio.h>
2 int main() {

3 char dest [20] = "Hello";
4 char src[] = " World";
5 char *pd = dest; Appending one string to another
6 char *ps = src;
7 while (*pd != °\0’) pd++;
8 while (xps != ’\0’) {
9 *pd = *ps;
10 pd++;
11 ps++;
12 s
13 #pd = '\0’;
14 printf ("Result: %s\n", dest);
15 return O;
16 ¥
Prof. Jyotiprakash Mishra C Programming - Deck 16

Program 6: String Comparison Using Pointers

Output:

1 #include <stdio.h>

2 int i
int main() { Strings are equal

3 char stri[] = "Hello";

4 char str2[] = "Hello";

5 char *pl = strilj Character-by-character comparison
6 char *p2 = str2;

7 while (#pil != ’\0’ && *p2 !'= °\0’) {
8 if (*pl != *p2) break;

9 pl++;

10 p2++;

11 ¥

12 if (xpl == %p2) {

13 printf ("Strings are equall\n");

14 } else {

15 printf ("Strings are not equal\n");
16 s

17 return O0;

18 }

Prof. Jyotiprakash Mishra C Programming - Deck 16

Output:

Reversed: olleH

1 #include <stdio.h>
2 int main() {

3 char str[] = "Hello";

4 char *left = str;

5 char *right = str; Two-pointer approach for reversal
6 char temp;

7 while (*right != >\0’) right++;
8 right--;

9 while (left < right) {

10 temp = xleft;

11 *left = *right;

12 *right = temp;

13 left++;

14 right--;

15 }

16 printf ("Reversed: %s\n", str);
17 return O0;

18 }

Prof. Jyotiprakash Mishra C Programming - Deck 16

Program 8: Count Vowels Using Pointer

1 #include <stdio.h> OUtPUt'

:2,) 1nzh1an:11;t(i [i[= "Programming"; Vowels in ’Programming’: 3
4 char *ptr = str;

5 int count = 0; Checking each character for vowel
6 while (*ptr != >\0’) {

7 char ch = *ptr;

8 if (ch==’a’||ch==’e’||ch=="i"]]|

9 ch==’0’||ch=="u’||ch=="4"1|

10 ’I°|lch=="0"1]|

11

12

13

14 ptr++;

15 s

16 printf ("Vowels in ’%s’: %d\n", str, count);

17 return O0;

18 ¥

yotiprakash Mishra i Deck 16

Program 9: Convert to Uppercase Using Pointer

Output:

1 #include <stdio.h>

2 int mai
int main() { Before: hello world

i z:: :;ir[t'st:?l“ vorld!; After: HELLO WORLD
5 printf ("Before: ¥%s\n", str);
6 while (kptr != ’\0’) { Converting lowercase to uppercase
7 if (xptr >= ’a’ && *ptr <= ’z’) {
8 *ptr = xptr - 32;
9 }
10 ptr++;
11 }
12 printf ("After: Y%s\n", str);
13 return O0;
14 }
Prof. Jyotiprakash Mishra C Programming - Deck 16

Array of String Pointers

Array where each element points to a string

Syntax: char *arr[5];

Each pointer can point to different string literals
Useful for managing multiple strings

Common for command-line arguments: char *argv[]
Strings can have different lengths

Memory efficient for read-only strings

Example: char *days[] = {"Mon", "Tue", "Wed"};

Prof. Jyotiprakash Mishra C Programming - Deck 16 12 /24

. Array of String Pointers

1 #include <stdio.h> Output:
2 int main() { Fruite
3 char *fruits[5] = { ruits:
" " 1. Apple
4 Apple",
" " 2. Banana
5 Banana",
" " 3. Cherry
6 Cherry",
7 "Date" 4. Date
8 "Elderberry" 5. Elderberry
9 };
10 int i; Each pointer points to a string literal

11 printf ("Fruits:\n");

12 for (i = 0; i < 5; i++) {

13 printf ("%d. %s\n", i+1, fruits[il);
}

15 return O;

Prof. Jyotiprakash Mishra C Programming - Deck 16

Program 11: Printing Strings with Pointers

1 #include <stdio.h> OUtPUt'
2 int main() { Mond
3 char *days[] = { ey

" " Tuesday
4 Monday",

" " Wednesday
5 Tuesday",

" " Thursday
6 Wednesday", Frid
7 "Thursday", riday
8 "Friday"
9 }; Pointer to pointer for string array
10 char *xptr = days;
11 int i;

12 for (i = 0; i < 5; i++) {
13 printf ("%s\n", *(ptr + i));
}

14
15 return O;
16 ¥
Prof. Jyotiprakash Mishra C Programming - Deck 16

Program 12: Find Longest String

1 #include <stdio.h> OUtPUt:

2 int main() { i
3 char *words[] = {"Hi", "Hello", "Hey", "Gree%?ﬂgfsf; Greetings (9)

4 int i, len, maxLen = 0;

5 int maxIndex = 0; Finding longest string in array
6 char *ptr;

7 for (i = 0; i < 4; i++) {

8

len = 0;
9 ptr = words[il;
10 while (*ptr != ’\0’) {
11 len++;
12 ptr++;
13 ¥
14 if (len > maxLen) {
15 maxLen = len;
16 maxIndex = ij;
17 b
18 }
19 printf ("Longest: %s (%d)\n",
20 words [maxIndex], maxLen);
21 return O;
22}

yotiprakash Mishra i Deck 16

Program 13: Search String in Array

1 #include <stdio.h> OUtPUt'

2 int main() { i
3 char *colors[] = {"Red", "Green", "Blue", "Yf?‘fgg J’l?lue’ i dacloR 2
4 char *search = "Blue";

5 int found = 0; Searching for specific string
6 int i;

7 char *pl, *p2;

8 for (i = 0; i < 4; i++) {

9 pl = colors[il;

10 p2 = search;

11 while (*pl && *p2 && *pl == xp2) {

12 pl++;

13 p2++;

14 }

15 if (*xpl == *p2) {

16 printf ("Found ’%s’ at index %d\n", search, i);

17 found = 1;

18 break;

19 ¥

20 }

21 if (!found) printf("Not found\n");

22 return 0;

23}

otiprakash Mishra Deck 16 16

Program 14: Count Total Characters in String Array

Output:

Total characters: 12

1 #include <stdio.h>

2 int main() {

3 char *words[] = {"C", "is", "powerful"};
4 int total = 0;

5 int i; Summing lengths of all strings
6 char *ptr;

7 for (i = 0; i < 3; i++) {

8 ptr = words[il;

9 while (xptr != >\0’) {
10 total++;
11 ptr++;
12 ¥
13 }
14 printf ("Total characters: %d\n", total);
15 return O;
16 ¥
Prof. Jyotiprakash Mishra C Programming - Deck 16

Program 15: Pointer Arithmetic with String

Output:

1 #include <stdio.h>

2 int i
int main() { Full string: Hello World

3 char str[] = "Hello World"; Foom fmdon G Fesild
4 char *ptr = str; Ch £ t 0: H
5 printf ("Full string: %s\n", ptr); aracter a :
. . . o N Character at 4: o
6 printf ("From index 6: %s\n", ptr + 6); Third char: 1
7 printf ("Character at 0: %c\n", *ptr); 1rd char:
8 printf ("Character at 4: Y%c\n", *(ptr + 4));
9 printf ("Third char: %c\n", ptr[2]); Using pointer arithmetic on strings
10 return 0;

11}

otiprakash Mishra

Deck 16 18 /24

Program 16: Remove Spaces Using Pointer

1 #include <stdio.h>

Output:

2 int main() {

char str[] = "He 1 1 o";

Result: Hello

char *pr = str;
char *pw = str; Two pointers: read and write
while (xpr != ’\0’) {

if (xpr t= °) {

}

*pw = *pr;
pw++;

pr++;

}

*pw

= ’\0’;

printf ("Result: ¥%s\n", str);
return O;

Prof.

yotiprakash Mishra C Programming - Deck 16

Program 17: Check Palindrome Using Pointers

Output:

1 #include <stdio.h>

2 int mai
int main() { ’madam’ is palindrome

3 char str[] = "madam";

4 char *left = str;

5 char *right = str; Checking from both ends
6 int isPal = 1;

7 while (xright != ’\0’) right++;

8 right--;

9 while (left < right) {

10 if (xleft != *right) {

11 isPal = 0;

12 break;

13 }

14 left++;

15 right--;

16 }

17 if (isPal) printf("’%s’ is palindrome\n", str);
18 else printf("’%s’ is not palindromel\n", str);
19 return 0;

20 %}

Prof. Jyotiprakash Mishra C Programming - Deck 16

: Count Words Using Pointer

Output:

Word count: 4

1 #include <stdio.h>
2 int main() {

3 char str[] = "Hello World from C";
4 char *ptr = str;

5 int words = 0; Counting words separated by spaces
6 int inWord = 0;

7 while (xptr != ’\0’) {

8 if (*ptr >y A

9 inWord = 0;

10 } else if (inWord == 0) {

11 inWord = 1;

12 words++;

13 }

14 ptr++;

15 }

16 printf ("Word count: %d\n", words);
17 return O0;

18 }

Prof. Jyotiprakash Mishra C Programming - Deck 16

Program 19: Find Character in String

Output:

’g’ found at position 3

1 #include <stdio.h>
2 int main() {

3 char str[] = "Programming";

4 char ch = ’g’;

5 char *ptr = str; Finding first occurrence of character
6 int pos = -1;

7 int 1 = 0;

8 while (*ptr != ’\0’) {

9 if (xptr == ch) {

10 pos = ij;

11 break;

12 }

13 ptr++;

14 i++;

15 }

16 if (pos != -1) {

17 printf ("’%c’ found at position %d\n", ch, pos);
18 } else {

19 printf ("’%c’ not found\n", ch);

20 }

21 return O;

22}

yotiprakash Mishra Deck 16

Program 20: Replace Character Using Pointer

Output:

1 #include <stdio.h>

2 int mai
int main() { Before: Hello World

3 char str[] = "Hello World"; s Henilo Femild
4 char *ptr = str; Replacements: 2
5 char 0ldCh = ’0’;

6 char newCh = ’x’;

7 int count = 0; Replacing all occurrences
8 printf ("Before: ¥%s\n", str);

9 while (*ptr != ’\0’) {

10 if (*ptr == o0ldCh) {

11 *ptr = newCh;

12 count++;

13 }

14 ptr++;

15 }

16 printf ("After: Y%s\n", str);
17 printf ("Replacements: %d\n", count);
18 return O0;

Prof. Jyotiprakash Mishra C Programming - Deck 16

Key Takeaways

@ String is a character array with null terminator
@ String literal creates pointer to read-only memory

o Character array is modifiable, string literal is not

@ Pointer arithmetic works naturally with strings

@ Array of string pointers: char *arr[]

@ Pointers simplify string manipulation operations

@ Two-pointer technique useful for many operations

@ Always ensure null terminator when modifying strings
°

Understanding pointers with strings is essential for C

Prof. Jyotiprakash Mishra C Programming - Deck 16

