C Programming - Deck 17

Pointers and Structures

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 17 1/23

Pointers to Structures

Pointer can point to a structure variable
Syntax: struct Point *ptr;

Access members using arrow operator: ptr->x
Arrow operator > is shorthand for (*ptr) .x
Dot operator . for structure variable

Arrow operator —> for structure pointer

Passing pointers to functions is more efficient

Avoids copying entire structure

Prof. Jyotiprakash Mishra C Programming - Deck 17 2/23

Program 1: Basic Pointer to Stru

1 #include <stdio.h> OUtPUt'

:2)) stxi';ll:txl.’olnt { Using dot: (10, 20)

4 int yi Using arrow: (10, 20)
5 3, ’ Using *: (10, 20)

6 int main() {

7 struct Point p1l = {10, 20}; Three ways to access: . -i and (*).
8 struct Point *ptr = π

9 printf ("Using dot: (%d, %d)\n", pl.x, pl.y);
10 printf ("Using arrow: (%d, %d)\n",

11 ptr->x, ptr->y);

12 printf ("Using *: (%d, %d)\n",
13 (xptr).x, (*ptr).y);

14 return 0;

15 %

Deck 17

yotiprakash Mishra

Program 2: Modifying Structure Through Pointer

Output:

Before: (5, 10)

#include <stdio.h>
struct Point {

it x; After: (15, 25)
int y;
int main() { Modifying structure members via pointer

struct Point pl = {5, 10};

struct Point *ptr = &pil;

9 printf ("Before: (%d, %d)\n", pl.x, pl.y);
10 ptr->x = 15;

11 ptr->y = 25;

12 printf ("After: (%d, %d)\n", pl.x, pl.y);
13 return O;

WNUT A WN R

yotiprakash Mishra C Programming - Deck 17

Program 3: Array of Structure Pointers

Output:

struct Student si = {1, 85}; Array of pointers to structures
struct Student s2 = {2, 90};

9 struct Student s3 = {3, 78};

10 struct Student *arr[3] = {&s1, &s2, &s3};

1 #include <stdio.h>

2

3 Stiﬁfztrgz‘fﬁie“t t Roll: 1, Marks: 85
2 int marké' Roll: 2, Marks: 90
5 3 ’ Roll: 3, Marks: 78
6 int main() {

7

8

11 int i;

12 for (i = 0; i < 3; i++) {

13 printf ("Roll: %d, Marks: %d\n",
14 arr[il->roll, arr([i]->marks);
15 }

16 return O0;

17 ¥

otiprakash Mishra i Deck 17

Program 4: Passing Structure Pointer to Function

Output:

void display(struct Point *p) {
printf ("Point: (%d, %d)\n", p->x, p->y);

1 #include <stdio.h>

2 struct Point { .

3 int x; Point: (10, 20)

4 int y;

5 }; Efficient: passes address, not copy
6

7

8

9 int main() {

10 struct Point pl = {10, 20};
11 display (&p1);

12 return 0;

13}

Prof.

yotiprakash Mishra C Programming - Deck 17

ure in Function

1 #include <stdio.h> OUtPUt'
§ stzgitxl?01nt { Before: (10, 20)
! ; After: (15, 30)
4 int y;
5 %}
6 void shift(struct Point *p, int dx, int dy) Flnction modifies original structure
7 p->x += dx;
8 p->y += dy;
9

10 int main() {

11 struct Point pl = {10, 20};

12 printf ("Before: (%d, %d)\n", pl.x, pl.y);
13 shift(gpl, 5, 10);

14 printf ("After: (%d, %d)\n", pl.x, pl.y);
15 return O;

Prof. Jyotiprakash Mishra C Programming - Deck 17

Program 6: Returning Structure Pointer

Output:

Max: (30, 40)

#include <stdio.h>
struct Point {
int x;
int y;
}; Returning pointer to existing structure
struct Point pl = {10, 20};
struct Point p2 = {30, 40};
struct Point* getMax(struct Point *a,
9 struct Point *b) {
10 if (a->x + a->y > b->x + b->y)
11 return a;
12 return b;

O~NOU A WN

14 int main() {

15 struct Point *max = getMax (&pl, &p2);

16 printf ("Max: (%d, %d)\n", max->x, max->y);
17 return O0;

18 }

yotiprakash Mishra

Deck 17 8/23

Program 7: Structure with Nested Pointer

1 #include <stdio.h> OUtPUt'
2
struct Person { Name: Alice
3 char *name;
4 int age; Age: 25
5 3, ’ Updated: Bob, 30
6 int main() {
7 struct Person pl = {"Alice", 25}; Structure containing pointer member
8 struct Person *ptr = &pl;

9 printf ("Name: %s\n", ptr->name);
10 printf ("Age: %d\n", ptr->age);
11 ptr->name = "Bob";

12 ptr->age = 30;

13 printf ("Updated: %s, %d\n",

14 ptr->name, ptr->age);
15 return O;
16 ¥

Prof. Jyotiprakash Mishra C Programming - Deck 17

Program 8: Pointer to Array of Structures

1 #include <stdio.h> OUtPUt'

2 struct Point { Point 0: (1, 2)
3 int x; .

2 int y; Po}nt 1: (3, 4)
5 3, Point 2: (5, 6)
6 int main() {

7 struct Point arr([3] = {{1,2}, {3,4}, {5,6XPhinter arithmetic with structures
8 struct Point *ptr = arr;

9 int i;

10 for (i = 0; i < 3; i++) {

11 printf ("Point %d: (%d, %d)\n",

12 i, (ptr+i)->x, (ptr+i)->y);

13 }

14 return 0;

15 %

yotiprakash Mishra C Programming - Deck 17

Program 9: Compare Stru

Output:

Points are equal

#include <stdio.h>
struct Point {

int x;

int y;
}; Comparing structure members
int equal(struct Point #*pil,

struct Point *p2) {

return (pl->x == p2->x && pl->y == p2->y);

WNOUI A WN R

9 ¥

10 int main() {

11 struct Point a = {10, 20};
12 struct Point b = {10, 20};
13 if (equal(&a, &b)) {

14 printf ("Points are equall\n");

15 } else {

16 printf ("Points are not equall\n");
17

18 return O0;

19 ¥

Prof. Jyotiprakash Mishra C Programming - Deck 17

Program 10: Distance Between Two Points

Output:

}s;

double distance(struct Point #*pil,
struct Point #*p2) {

9 int dx = p2->x - pl->x;

10 int dy = p2->y - pl->y;

11 return sqrt(dx*dx + dyxdy);

12 3}

13 int main() {

14 struct Point a = {0, 0};

15 struct Point b = {3, 4};

16 printf ("Distance: %.2f\n", distance(&a, &b));

17 return O0;

1 #include <stdio.h>

2 #include <math.h>

3 struct Point { Distance: 5.00

4 int x;

5 int y; Computing distance using pointers
6

7

8

Deck 17

yotiprakash Mishra

Program 11: Self-Referential Structure

Output:

10 -> 20 -> 30 -> NULL

#include <stdio.h>
struct Node {

int data;

struct Node *next;
}; Linked list concept with pointers
int main() {

struct Node n1 = {10, NULL};

struct Node n2 = {20, NULL};
9 struct Node n3 = {30, NULL};
10 nil.next = &n2;
11 n2.next = &n3;
12 struct Node *ptr = ∋

WNOUI A WN R

13 while (ptr != NULL) {

14 printf ("%d -> ", ptr->data);
15 ptr = ptr->next;

16

17 printf ("NULL\n");

18 return O0;

19 }

yotiprakash Mishra Deck 17

Program 12: Finding Student with Highest

1 #include <stdio.h> OUtPUt'
2

S SrTuer Student ! Highest: Bob (92)
4 int marks;

5} Pointer to max element in array
6 int main() {

7 struct Student s[3] = {

8 {"Alice", 85},

9 {"Bob", 92},

10 {"Charlie", 78}

11 };

12 struct Student *max = &s[0];

13 int i;

14 for (i = 1; i < 3; i++) {

15 if (s[i].marks > max->marks) {

16 max = &s[il;

17 b

18 }

19 printf ("Highest: %s (%d)\n",

20 max->name, max->marks);

21 return O;

22}

Prof. Jyotiprakash Mishra C Programming - Deck 17

Program 13: Swap Two Structures Using Pointers

Output:

Before: (10,20) (30,40)

#include <stdio.h>
struct Point {

int x; After: (30,40) (10,20)
int y;
void swap(struct Point *pi, Swapping entire structures

struct Point #*p2) {

struct Point temp = *pil;

9 *pl = *p2;

10 *p2 = temp;

11 3}

12 int main() {

13 struct Point a = {10, 20};

14 struct Point b = {30, 40};

15 printf ("Before: (%d,%d) (%d,%d)\n",
16 a.x, a.y, b.x, b.y);

17 swap (&a, &b);

18 printf ("After: (%d,%d) (%d,%d)\n",

ONOU A WN

19 a.x, a.y, b.x, b.y);
20 return 0;
21 %}

Prof. Jyotiprakash Mishra C Programming - Deck 17

Program 14: Nested Structure with Pointers

1 #include <stdio.h> Output:

2 t t Dat

3 ° 11:: da;e ! Name: John

4 int month; DOB: 15/8/1990

5 int year;

6 % Accessing nested structure members
7 struct Employee {

8 char name [20];

9 struct Date dob;

10

11 int main() {

12 struct Employee e = {"John", {15, 8, 1990}};
13 struct Employee *ptr = &e;

14 printf ("Name: %s\n", ptr->name);

15 printf ("DOB: %d/%d/%d\n",

16 ptr->dob.day, ptr->dob.month, ptr->dob.year);
17 return O0;
18 ¥

Deck 17

yotiprakash Mishra

Program 15: Calculate Average Marks Using Pointers

O~NOU A WN

Output:

Average: 84.33

#include <stdio.h>
struct Student {
int roll;
int marks;

}; Processing array of structures
float average(struct Student *arr, int n) {
int sum = O;
int i;
for (i = 0; i < n; i++) {
sum += (arr + i)->marks;

return (float)sum / n;

int main() {
struct Student s[3] = {{1,85},{2,90},{3,78}};
printf ("Average: %.2f\n", average(s, 3));
return O;

Prof.

yotiprakash Mishra C Programming - Deck 17

Program 16: Pointer to Structure with Array Member

Output:

struct Student s = {"Alice", {85, 90, 78}};
struct Student *ptr = &s;

9 int i;

10 printf ("Name: %s\n", ptr->name);

11 printf ("Marks: ");

12 for (i = 0; i < 3; i++) {

1 #include <stdio.h>

2 t t Student

3 ° Zﬁzr naieel:go]’ft St

4 int marks([3]; Marks: 85 90 78

5 1}

6 int main() { Structure with array accessed via pointer
7

8

13 printf ("%d ", ptr->marks[i]);
14 ¥
15 printf ("\n");
16 return O0;
17 ¥
Prof. Jyotiprakash Mishra C Programming - Deck 17 18 /23

Program 17: Update Structure Array Using Pointer

Output:

1 #include <stdio.h>

2 struct Point {

3 int x; (11,22) (13,24)
4 int y;

5 %} Modifying all structures in array
6 void translate(struct Point *arr, int n,

7 int dx, int dy) {

8 int i;

9 for (i = 0; i < n; i++) {

10 (arr + i)->x += dx;

11 (arr + i)->y += dy;

12 b

13)

14 int main() {

15 struct Point p[2] = {{1,2}, {3,4}};
16 translate(p, 2, 10, 20);

17 printf (" (%d,%d) (%d,%d)\n",

18 plol.x, plol.y, p[1l.x, pl[1l.y);
19 return 0;
20 ¥

Prof. Jyotiprakash Mishra C Programming - Deck 17

Program 18: Size of Structure and Pointer

Output:

1 #include <stdio.h>
2 stl:"uct Student { Size of structure: 28
3 int roll; A N
4 char name [20]; Size of pointer: 8
’ Advantage of pointer: less copy
5 float marks;
6 1}
7 int main() { Pointer is much smaller than structure
8 struct Student s;
9 struct Student *ptr;
10 printf ("Size of structure: %lu\n",
11 sizeof (s));
12 printf("Size of pointer: %lu\n",
13 sizeof (ptr));
14 printf ("Advantage of pointer: less copy\n");
15 return O;
16 ¥

yotiprakash Mishra i Deck 17

Program 19: Sort Structures Using Pointers

WNOUTAWN R

Output:

Roll:1 Marks:85
Roll:2 Marks:90
Roll:3 Marks:78

#include <stdio.h>
struct Student {
int roll;
int marks;
}
int main() {
struct Student s[3] = {{3,78},{1,85},{2,9@bhing pointers, not structures
struct Student *p[3] = {&s[0],&s[1],&s[2]};
struct Student *temp;
int i, j;
for (i = 0; i < 2; i++) {
for (j = i+1; j < 3; j++) {
if (plil->roll > p[jl->roll) {

temp = pl[il;
plil = pljl;
pljl = temp;

}
}
}
for (i=0; i<3; i++)
printf ("Roll:%d Marks:%d\n",
plil->roll, plil->marks);
return O;

yotiprakash Mishra Deck 17

Program 20: Complex Structure with Multiple Pointers

Output:

Forward: 10 -> 20
Backward: 20 -> 10

#include <stdio.h>
struct Node {
int data;
struct Node *prev;
struct Node *next;
}; Doubly linked list concept
int main() {
struct Node nl = {10, NULL, NULL};
9 struct Node n2 = {20, NULL, NULL};
10 nil.next = &n2;
11 n2.prev = &nil;
12 struct Node *ptr = ∋
13 printf ("Forward: %d -> %d\n",
14 ptr->data, ptr->next->data);
15 ptr = &n2;
16 printf ("Backward: %d -> %d\n",

WNOUI A WN R

17 ptr->data, ptr->prev->data);
18 return O0;
19 }

Prof. Jyotiprakash Mishra C Programming - Deck 17

Key Takeaways

Pointer to structure: struct Type *ptr;
Arrow operator —> for pointer: ptr->member
Dot operator . for variable: var.member
ptr->member equivalent to (*ptr) .member
Passing pointers avoids copying entire structure
Array of structure pointers for flexible data
Self-referential structures enable linked lists

Pointer arithmetic works with structure arrays

Understanding this is crucial for data structures

Prof. Jyotiprakash Mishra C Programming - Deck 17 23/23

