
C Programming - Deck 17
Pointers and Structures

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 17 1 / 23

Pointers to Structures

Pointer can point to a structure variable

Syntax: struct Point *ptr;

Access members using arrow operator: ptr->x

Arrow operator -> is shorthand for (*ptr).x

Dot operator . for structure variable

Arrow operator -> for structure pointer

Passing pointers to functions is more efficient

Avoids copying entire structure

Prof. Jyotiprakash Mishra C Programming - Deck 17 2 / 23

Program 1: Basic Pointer to Structure

1 #include <stdio.h>

2 struct Point {

3 int x;

4 int y;

5 };

6 int main() {

7 struct Point p1 = {10, 20};

8 struct Point *ptr = &p1;

9 printf("Using dot: (%d, %d)\n", p1.x, p1.y);

10 printf("Using arrow: (%d, %d)\n",

11 ptr ->x, ptr ->y);

12 printf("Using *: (%d, %d)\n",

13 (*ptr).x, (*ptr).y);

14 return 0;

15 }

Output:
Using dot: (10, 20)

Using arrow: (10, 20)

Using *: (10, 20)

Three ways to access: . -¿ and (*).

Prof. Jyotiprakash Mishra C Programming - Deck 17 3 / 23

Program 2: Modifying Structure Through Pointer

1 #include <stdio.h>

2 struct Point {

3 int x;

4 int y;

5 };

6 int main() {

7 struct Point p1 = {5, 10};

8 struct Point *ptr = &p1;

9 printf("Before: (%d, %d)\n", p1.x, p1.y);

10 ptr ->x = 15;

11 ptr ->y = 25;

12 printf("After: (%d, %d)\n", p1.x, p1.y);

13 return 0;

14 }

Output:
Before: (5, 10)

After: (15, 25)

Modifying structure members via pointer

Prof. Jyotiprakash Mishra C Programming - Deck 17 4 / 23

Program 3: Array of Structure Pointers

1 #include <stdio.h>

2 struct Student {

3 int roll;

4 int marks;

5 };

6 int main() {

7 struct Student s1 = {1, 85};

8 struct Student s2 = {2, 90};

9 struct Student s3 = {3, 78};

10 struct Student *arr [3] = {&s1 , &s2, &s3};

11 int i;

12 for (i = 0; i < 3; i++) {

13 printf("Roll: %d, Marks: %d\n",

14 arr[i]->roll , arr[i]->marks);

15 }

16 return 0;

17 }

Output:
Roll: 1, Marks: 85

Roll: 2, Marks: 90

Roll: 3, Marks: 78

Array of pointers to structures

Prof. Jyotiprakash Mishra C Programming - Deck 17 5 / 23

Program 4: Passing Structure Pointer to Function

1 #include <stdio.h>

2 struct Point {

3 int x;

4 int y;

5 };

6 void display(struct Point *p) {

7 printf("Point: (%d, %d)\n", p->x, p->y);

8 }

9 int main() {

10 struct Point p1 = {10, 20};

11 display (&p1);

12 return 0;

13 }

Output:
Point: (10, 20)

Efficient: passes address, not copy

Prof. Jyotiprakash Mishra C Programming - Deck 17 6 / 23

Program 5: Modifying Structure in Function

1 #include <stdio.h>

2 struct Point {

3 int x;

4 int y;

5 };

6 void shift(struct Point *p, int dx, int dy) {

7 p->x += dx;

8 p->y += dy;

9 }

10 int main() {

11 struct Point p1 = {10, 20};

12 printf("Before: (%d, %d)\n", p1.x, p1.y);

13 shift(&p1, 5, 10);

14 printf("After: (%d, %d)\n", p1.x, p1.y);

15 return 0;

16 }

Output:
Before: (10, 20)

After: (15, 30)

Function modifies original structure

Prof. Jyotiprakash Mishra C Programming - Deck 17 7 / 23

Program 6: Returning Structure Pointer

1 #include <stdio.h>

2 struct Point {

3 int x;

4 int y;

5 };

6 struct Point p1 = {10, 20};

7 struct Point p2 = {30, 40};

8 struct Point* getMax(struct Point *a,

9 struct Point *b) {

10 if (a->x + a->y > b->x + b->y)

11 return a;

12 return b;

13 }

14 int main() {

15 struct Point *max = getMax (&p1, &p2);

16 printf("Max: (%d, %d)\n", max ->x, max ->y);

17 return 0;

18 }

Output:
Max: (30, 40)

Returning pointer to existing structure

Prof. Jyotiprakash Mishra C Programming - Deck 17 8 / 23

Program 7: Structure with Nested Pointer Members

1 #include <stdio.h>

2 struct Person {

3 char *name;

4 int age;

5 };

6 int main() {

7 struct Person p1 = {"Alice", 25};

8 struct Person *ptr = &p1;

9 printf("Name: %s\n", ptr ->name);

10 printf("Age: %d\n", ptr ->age);

11 ptr ->name = "Bob";

12 ptr ->age = 30;

13 printf("Updated: %s, %d\n",

14 ptr ->name , ptr ->age);

15 return 0;

16 }

Output:
Name: Alice

Age: 25

Updated: Bob , 30

Structure containing pointer member

Prof. Jyotiprakash Mishra C Programming - Deck 17 9 / 23

Program 8: Pointer to Array of Structures

1 #include <stdio.h>

2 struct Point {

3 int x;

4 int y;

5 };

6 int main() {

7 struct Point arr[3] = {{1,2}, {3,4}, {5 ,6}};

8 struct Point *ptr = arr;

9 int i;

10 for (i = 0; i < 3; i++) {

11 printf("Point %d: (%d, %d)\n",

12 i, (ptr+i)->x, (ptr+i)->y);

13 }

14 return 0;

15 }

Output:
Point 0: (1, 2)

Point 1: (3, 4)

Point 2: (5, 6)

Pointer arithmetic with structures

Prof. Jyotiprakash Mishra C Programming - Deck 17 10 / 23

Program 9: Compare Structures Using Pointers

1 #include <stdio.h>

2 struct Point {

3 int x;

4 int y;

5 };

6 int equal(struct Point *p1,

7 struct Point *p2) {

8 return (p1->x == p2->x && p1->y == p2->y);

9 }

10 int main() {

11 struct Point a = {10, 20};

12 struct Point b = {10, 20};

13 if (equal(&a, &b)) {

14 printf("Points are equal\n");

15 } else {

16 printf("Points are not equal\n");

17 }

18 return 0;

19 }

Output:
Points are equal

Comparing structure members

Prof. Jyotiprakash Mishra C Programming - Deck 17 11 / 23

Program 10: Distance Between Two Points

1 #include <stdio.h>

2 #include <math.h>

3 struct Point {

4 int x;

5 int y;

6 };

7 double distance(struct Point *p1,

8 struct Point *p2) {

9 int dx = p2 ->x - p1->x;

10 int dy = p2 ->y - p1->y;

11 return sqrt(dx*dx + dy*dy);

12 }

13 int main() {

14 struct Point a = {0, 0};

15 struct Point b = {3, 4};

16 printf("Distance: %.2f\n", distance (&a, &b));

17 return 0;

18 }

Output:
Distance: 5.00

Computing distance using pointers

Prof. Jyotiprakash Mishra C Programming - Deck 17 12 / 23

Program 11: Self-Referential Structure

1 #include <stdio.h>

2 struct Node {

3 int data;

4 struct Node *next;

5 };

6 int main() {

7 struct Node n1 = {10, NULL};

8 struct Node n2 = {20, NULL};

9 struct Node n3 = {30, NULL};

10 n1.next = &n2;

11 n2.next = &n3;

12 struct Node *ptr = &n1;

13 while (ptr != NULL) {

14 printf("%d -> ", ptr ->data);

15 ptr = ptr ->next;

16 }

17 printf("NULL\n");

18 return 0;

19 }

Output:
10 -> 20 -> 30 -> NULL

Linked list concept with pointers

Prof. Jyotiprakash Mishra C Programming - Deck 17 13 / 23

Program 12: Finding Student with Highest Marks

1 #include <stdio.h>

2 struct Student {

3 char name [20];

4 int marks;

5 };

6 int main() {

7 struct Student s[3] = {

8 {"Alice", 85},

9 {"Bob", 92},

10 {"Charlie", 78}

11 };

12 struct Student *max = &s[0];

13 int i;

14 for (i = 1; i < 3; i++) {

15 if (s[i].marks > max ->marks) {

16 max = &s[i];

17 }

18 }

19 printf("Highest: %s (%d)\n",

20 max ->name , max ->marks);

21 return 0;

22 }

Output:
Highest: Bob (92)

Pointer to max element in array

Prof. Jyotiprakash Mishra C Programming - Deck 17 14 / 23

Program 13: Swap Two Structures Using Pointers

1 #include <stdio.h>

2 struct Point {

3 int x;

4 int y;

5 };

6 void swap(struct Point *p1,

7 struct Point *p2) {

8 struct Point temp = *p1;

9 *p1 = *p2;

10 *p2 = temp;

11 }

12 int main() {

13 struct Point a = {10, 20};

14 struct Point b = {30, 40};

15 printf("Before: (%d,%d) (%d,%d)\n",

16 a.x, a.y, b.x, b.y);

17 swap(&a, &b);

18 printf("After: (%d,%d) (%d,%d)\n",

19 a.x, a.y, b.x, b.y);

20 return 0;

21 }

Output:
Before: (10 ,20) (30 ,40)

After: (30 ,40) (10 ,20)

Swapping entire structures

Prof. Jyotiprakash Mishra C Programming - Deck 17 15 / 23

Program 14: Nested Structure with Pointers

1 #include <stdio.h>

2 struct Date {

3 int day;

4 int month;

5 int year;

6 };

7 struct Employee {

8 char name [20];

9 struct Date dob;

10 };

11 int main() {

12 struct Employee e = {"John", {15, 8, 1990}};

13 struct Employee *ptr = &e;

14 printf("Name: %s\n", ptr ->name);

15 printf("DOB: %d/%d/%d\n",

16 ptr ->dob.day , ptr ->dob.month , ptr ->dob.year);

17 return 0;

18 }

Output:
Name: John

DOB: 15/8/1990

Accessing nested structure members

Prof. Jyotiprakash Mishra C Programming - Deck 17 16 / 23

Program 15: Calculate Average Marks Using Pointers

1 #include <stdio.h>

2 struct Student {

3 int roll;

4 int marks;

5 };

6 float average(struct Student *arr , int n) {

7 int sum = 0;

8 int i;

9 for (i = 0; i < n; i++) {

10 sum += (arr + i)->marks;

11 }

12 return (float)sum / n;

13 }

14 int main() {

15 struct Student s[3] = {{1 ,85} ,{2 ,90} ,{3 ,78}};

16 printf("Average: %.2f\n", average(s, 3));

17 return 0;

18 }

Output:
Average: 84.33

Processing array of structures

Prof. Jyotiprakash Mishra C Programming - Deck 17 17 / 23

Program 16: Pointer to Structure with Array Member

1 #include <stdio.h>

2 struct Student {

3 char name [20];

4 int marks [3];

5 };

6 int main() {

7 struct Student s = {"Alice", {85, 90, 78}};

8 struct Student *ptr = &s;

9 int i;

10 printf("Name: %s\n", ptr ->name);

11 printf("Marks: ");

12 for (i = 0; i < 3; i++) {

13 printf("%d ", ptr ->marks[i]);

14 }

15 printf("\n");

16 return 0;

17 }

Output:
Name: Alice

Marks: 85 90 78

Structure with array accessed via pointer

Prof. Jyotiprakash Mishra C Programming - Deck 17 18 / 23

Program 17: Update Structure Array Using Pointer

1 #include <stdio.h>

2 struct Point {

3 int x;

4 int y;

5 };

6 void translate(struct Point *arr , int n,

7 int dx, int dy) {

8 int i;

9 for (i = 0; i < n; i++) {

10 (arr + i)->x += dx;

11 (arr + i)->y += dy;

12 }

13 }

14 int main() {

15 struct Point p[2] = {{1,2}, {3 ,4}};

16 translate(p, 2, 10, 20);

17 printf("(%d,%d) (%d,%d)\n",

18 p[0].x, p[0].y, p[1].x, p[1].y);

19 return 0;

20 }

Output:
(11 ,22) (13 ,24)

Modifying all structures in array

Prof. Jyotiprakash Mishra C Programming - Deck 17 19 / 23

Program 18: Size of Structure and Pointer

1 #include <stdio.h>

2 struct Student {

3 int roll;

4 char name [20];

5 float marks;

6 };

7 int main() {

8 struct Student s;

9 struct Student *ptr;

10 printf("Size of structure: %lu\n",

11 sizeof(s));

12 printf("Size of pointer: %lu\n",

13 sizeof(ptr));

14 printf("Advantage of pointer: less copy\n");

15 return 0;

16 }

Output:
Size of structure: 28

Size of pointer: 8

Advantage of pointer: less copy

Pointer is much smaller than structure

Prof. Jyotiprakash Mishra C Programming - Deck 17 20 / 23

Program 19: Sort Structures Using Pointers

1 #include <stdio.h>

2 struct Student {

3 int roll;

4 int marks;

5 };

6 int main() {

7 struct Student s[3] = {{3 ,78} ,{1 ,85} ,{2 ,90}};

8 struct Student *p[3] = {&s[0],&s[1],&s[2]};

9 struct Student *temp;

10 int i, j;

11 for (i = 0; i < 2; i++) {

12 for (j = i+1; j < 3; j++) {

13 if (p[i]->roll > p[j]->roll) {

14 temp = p[i];

15 p[i] = p[j];

16 p[j] = temp;

17 }

18 }

19 }

20 for (i=0; i<3; i++)

21 printf("Roll:%d Marks:%d\n",

22 p[i]->roll , p[i]->marks);

23 return 0;

24 }

Output:
Roll:1 Marks :85

Roll:2 Marks :90

Roll:3 Marks :78

Sorting pointers, not structures

Prof. Jyotiprakash Mishra C Programming - Deck 17 21 / 23

Program 20: Complex Structure with Multiple Pointers

1 #include <stdio.h>

2 struct Node {

3 int data;

4 struct Node *prev;

5 struct Node *next;

6 };

7 int main() {

8 struct Node n1 = {10, NULL , NULL};

9 struct Node n2 = {20, NULL , NULL};

10 n1.next = &n2;

11 n2.prev = &n1;

12 struct Node *ptr = &n1;

13 printf("Forward: %d -> %d\n",

14 ptr ->data , ptr ->next ->data);

15 ptr = &n2;

16 printf("Backward: %d -> %d\n",

17 ptr ->data , ptr ->prev ->data);

18 return 0;

19 }

Output:
Forward: 10 -> 20

Backward: 20 -> 10

Doubly linked list concept

Prof. Jyotiprakash Mishra C Programming - Deck 17 22 / 23

Key Takeaways

Pointer to structure: struct Type *ptr;

Arrow operator -> for pointer: ptr->member

Dot operator . for variable: var.member

ptr->member equivalent to (*ptr).member

Passing pointers avoids copying entire structure

Array of structure pointers for flexible data

Self-referential structures enable linked lists

Pointer arithmetic works with structure arrays

Understanding this is crucial for data structures

Prof. Jyotiprakash Mishra C Programming - Deck 17 23 / 23

