
C Programming - Deck 18
Dynamic Memory Allocation

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 18 1 / 26

Dynamic Memory Allocation

Memory allocated at runtime, not compile time

Allocated from heap memory

Size can be determined during program execution

Must be manually freed to avoid memory leaks

Four key functions: malloc, calloc, realloc, free

Header file: <stdlib.h>

Returns NULL if allocation fails

Always check for NULL before using

Prof. Jyotiprakash Mishra C Programming - Deck 18 2 / 26

Memory Allocation Functions

malloc(): Allocates uninitialized memory

Syntax: void* malloc(size t size);

calloc(): Allocates zero-initialized memory

Syntax: void* calloc(size t num, size t size);

realloc(): Resizes previously allocated memory

Syntax: void* realloc(void* ptr, size t size);

free(): Deallocates memory

Syntax: void free(void* ptr);

Prof. Jyotiprakash Mishra C Programming - Deck 18 3 / 26

Program 1: Basic malloc and free

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *ptr;

5 ptr = (int*) malloc(sizeof(int));

6 if (ptr == NULL) {

7 printf("Memory allocation failed\n");

8 return 1;

9 }

10 *ptr = 42;

11 printf("Value: %d\n", *ptr);

12 printf("Address: %p\n", (void*)ptr);

13 free(ptr);

14 printf("Memory freed\n");

15 return 0;

16 }

Output:
Value: 42

Address: 0x7f9a8c405820

Memory freed

Basic allocation and deallocation

Prof. Jyotiprakash Mishra C Programming - Deck 18 4 / 26

Program 2: malloc vs calloc

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *arr1 = (int*) malloc (5 * sizeof(int));

5 int *arr2 = (int*) calloc(5, sizeof(int));

6 int i;

7 printf("malloc (uninitialized):\n");

8 for (i = 0; i < 5; i++) {

9 printf("%d ", arr1[i]);

10 }

11 printf("\ncalloc (zero -initialized):\n");

12 for (i = 0; i < 5; i++) {

13 printf("%d ", arr2[i]);

14 }

15 printf("\n");

16 free(arr1);

17 free(arr2);

18 return 0;

19 }

Output:
malloc (uninitialized):

0 32767 0 0 1606416992

calloc (zero -initialized):

0 0 0 0 0

calloc initializes to zero, malloc doesn’t

Prof. Jyotiprakash Mishra C Programming - Deck 18 5 / 26

Program 3: Dynamic Array Allocation

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int n, i;

5 int *arr;

6 printf("Enter size: ");

7 scanf("%d", &n);

8 arr = (int*) malloc(n * sizeof(int));

9 if (arr == NULL) {

10 printf("Allocation failed\n");

11 return 1;

12 }

13 for (i = 0; i < n; i++) {

14 arr[i] = i * 10;

15 }

16 printf("Array: ");

17 for (i = 0; i < n; i++) {

18 printf("%d ", arr[i]);

19 }

20 printf("\n");

21 free(arr);

22 return 0;

23 }

Output:
Enter size: 5

Array: 0 10 20 30 40

Runtime size determination

Prof. Jyotiprakash Mishra C Programming - Deck 18 6 / 26

Program 4: realloc - Resizing Array

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *arr = (int*) malloc (3 * sizeof(int));

5 int i;

6 arr [0] = 10; arr[1] = 20; arr[2] = 30;

7 printf("Original: ");

8 for (i = 0; i < 3; i++) printf("%d ", arr[i]);

9 arr = (int*) realloc(arr , 5 * sizeof(int));

10 if (arr == NULL) {

11 printf("Reallocation failed\n");

12 return 1;

13 }

14 arr [3] = 40; arr[4] = 50;

15 printf("\nResized: ");

16 for (i = 0; i < 5; i++) printf("%d ", arr[i]);

17 printf("\n");

18 free(arr);

19 return 0;

20 }

Output:
Original: 10 20 30

Resized: 10 20 30 40 50

realloc preserves existing data

Prof. Jyotiprakash Mishra C Programming - Deck 18 7 / 26

Program 5: Dynamic String Allocation

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 int main() {

5 char *str;

6 int len = 20;

7 str = (char*) malloc(len * sizeof(char));

8 if (str == NULL) {

9 printf("Allocation failed\n");

10 return 1;

11 }

12 strcpy(str , "Hello World");

13 printf("String: %s\n", str);

14 printf("Length: %lu\n", strlen(str));

15 free(str);

16 return 0;

17 }

Output:
String: Hello World

Length: 11

Dynamic string allocation

Prof. Jyotiprakash Mishra C Programming - Deck 18 8 / 26

Program 6: Dynamic 2D Array (Method 1)

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int **arr;

5 int rows = 3, cols = 4;

6 int i, j;

7 arr = (int **) malloc(rows * sizeof(int *));

8 for (i = 0; i < rows; i++) {

9 arr[i] = (int*) malloc(cols * sizeof(int));

10 }

11 for (i = 0; i < rows; i++) {

12 for (j = 0; j < cols; j++) {

13 arr[i][j] = i * cols + j;

14 }

15 }

16 for (i = 0; i < rows; i++) {

17 for (j = 0; j < cols; j++) {

18 printf("%2d ", arr[i][j]);

19 }

20 printf("\n");

21 }

22 for (i = 0; i < rows; i++) free(arr[i]);

23 free(arr);

24 return 0;

25 }

Output:
0 1 2 3

4 5 6 7

8 9 10 11

Array of pointers approach

Prof. Jyotiprakash Mishra C Programming - Deck 18 9 / 26

Program 7: Dynamic 2D Array (Contiguous Memory)

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *arr;

5 int rows = 3, cols = 4;

6 int i, j;

7 arr = (int*) malloc(rows*cols*sizeof(int));

8 if (arr == NULL) {

9 printf("Allocation failed\n");

10 return 1;

11 }

12 for (i = 0; i < rows; i++) {

13 for (j = 0; j < cols; j++) {

14 arr[i * cols + j] = i * cols + j;

15 }

16 }

17 for (i = 0; i < rows; i++) {

18 for (j = 0; j < cols; j++) {

19 printf("%2d ", arr[i * cols + j]);

20 }

21 printf("\n");

22 }

23 free(arr);

24 return 0;

25 }

Output:
0 1 2 3

4 5 6 7

8 9 10 11

Single contiguous block

Prof. Jyotiprakash Mishra C Programming - Deck 18 10 / 26

Program 8: Jagged Array (Variable Row Lengths)

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int **arr;

5 int rows = 3;

6 int cols[] = {2, 4, 3};

7 int i, j;

8 arr = (int **) malloc(rows * sizeof(int *));

9 for (i = 0; i < rows; i++) {

10 arr[i] = (int*) malloc(cols[i]* sizeof(int));

11 }

12 for (i = 0; i < rows; i++) {

13 for (j = 0; j < cols[i]; j++) {

14 arr[i][j] = i * 10 + j;

15 }

16 }

17 for (i = 0; i < rows; i++) {

18 for (j = 0; j < cols[i]; j++) {

19 printf("%d ", arr[i][j]);

20 }

21 printf("\n");

22 }

23 for (i = 0; i < rows; i++) free(arr[i]);

24 free(arr);

25 return 0;

26 }

Output:
0 1

10 11 12 13

20 21 22

Each row has different length

Prof. Jyotiprakash Mishra C Programming - Deck 18 11 / 26

Program 9: Dynamic Structure Allocation

1 #include <stdio.h>

2 #include <stdlib.h>

3 struct Point {

4 int x;

5 int y;

6 };

7 int main() {

8 struct Point *p;

9 p = (struct Point *) malloc(sizeof(struct Point));

10 if (p == NULL) {

11 printf("Allocation failed\n");

12 return 1;

13 }

14 p->x = 10;

15 p->y = 20;

16 printf("Point: (%d, %d)\n", p->x, p->y);

17 free(p);

18 return 0;

19 }

Output:
Point: (10, 20)

Allocating single structure

Prof. Jyotiprakash Mishra C Programming - Deck 18 12 / 26

Program 10: Dynamic Array of Structures

1 #include <stdio.h>

2 #include <stdlib.h>

3 struct Student {

4 int roll;

5 int marks;

6 };

7 int main() {

8 struct Student *arr;

9 int n = 3, i;

10 arr = (struct Student *) malloc(

11 n * sizeof(struct Student));

12 arr [0]. roll = 1; arr [0]. marks = 85;

13 arr [1]. roll = 2; arr [1]. marks = 90;

14 arr [2]. roll = 3; arr [2]. marks = 78;

15 for (i = 0; i < n; i++) {

16 printf("Roll: %d, Marks: %d\n",

17 arr[i].roll , arr[i].marks);

18 }

19 free(arr);

20 return 0;

21 }

Output:
Roll: 1, Marks: 85

Roll: 2, Marks: 90

Roll: 3, Marks: 78

Array of structures on heap

Prof. Jyotiprakash Mishra C Programming - Deck 18 13 / 26

Program 11: Growing Array with realloc

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *arr = NULL;

5 int size = 0, capacity = 0;

6 int i, val;

7 int inputs [] = {10, 20, 30, 40, 50};

8 for (i = 0; i < 5; i++) {

9 if (size == capacity) {

10 capacity = (capacity == 0) ? 1 : capacity * 2;

11 arr = (int*) realloc(arr ,

12 capacity * sizeof(int));

13 }

14 arr[size ++] = inputs[i];

15 }

16 printf("Array (%d elements): ", size);

17 for (i = 0; i < size; i++) {

18 printf("%d ", arr[i]);

19 }

20 printf("\n");

21 free(arr);

22 return 0;

23 }

Output:
Array (5 elements): 10 20 30 40 50

Dynamic array that grows automatically

Prof. Jyotiprakash Mishra C Programming - Deck 18 14 / 26

Memory Leaks

Memory allocated but never freed

Program keeps consuming memory

Eventually causes performance issues or crashes

Common causes:

Forgetting to call free()
Losing pointer to allocated memory
Early return without freeing
Exception/error without cleanup

Prevention: Always pair malloc/calloc with free

Set pointer to NULL after freeing

Use valgrind or similar tools to detect leaks

Prof. Jyotiprakash Mishra C Programming - Deck 18 15 / 26

Program 12: Memory Leak Example (WRONG)

1 #include <stdio.h>

2 #include <stdlib.h>

3 void leak() {

4 int *ptr = (int*) malloc (100 * sizeof(int));

5 printf("Allocated memory\n");

6 }

7 int main() {

8 int i;

9 for (i = 0; i < 5; i++) {

10 leak ();

11 }

12 printf("Memory leaked 5 times!\n");

13 return 0;

14 }

Correct version:
1 void noLeak () {

2 int *ptr = (int*) malloc (100 * sizeof(int));

3 printf("Allocated memory\n");

4 free(ptr);

5 }

Output:
Allocated memory

Allocated memory

Allocated memory

Allocated memory

Allocated memory

Memory leaked 5 times!

Memory not freed in leak() function

Prof. Jyotiprakash Mishra C Programming - Deck 18 16 / 26

Program 13: Lost Pointer (Memory Leak)

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *ptr1 = (int*) malloc (10 * sizeof(int));

5 printf("Allocated at: %p\n", (void*)ptr1);

6 ptr1 = (int*) malloc (20 * sizeof(int));

7 printf("New allocation: %p\n", (void*)ptr1);

8 printf("First allocation leaked !\n");

9 free(ptr1);

10 return 0;

11 }

Correct:
1 int *ptr1 = (int*) malloc (10 * sizeof(int));

2 free(ptr1);

3 ptr1 = (int*) malloc (20 * sizeof(int));

4 free(ptr1);

Output:
Allocated at: 0x7f9a8c405820

New allocation: 0x7f9a8c405850

First allocation leaked!

Lost reference to first allocation

Prof. Jyotiprakash Mishra C Programming - Deck 18 17 / 26

Program 14: Double Free (WRONG)

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *ptr = (int*) malloc(sizeof(int));

5 *ptr = 42;

6 printf("Value: %d\n", *ptr);

7 free(ptr);

8 printf("Freed once\n");

9 free(ptr);

10 printf("Freed twice - CRASH !\n");

11 return 0;

12 }

Correct:
1 free(ptr);

2 ptr = NULL;

3 if (ptr != NULL) {

4 free(ptr);

5 }

Output:
Value: 42

Freed once

Segmentation fault (core dumped)

Never free same pointer twice!

Prof. Jyotiprakash Mishra C Programming - Deck 18 18 / 26

Program 15: Using Freed Memory (Dangling Pointer)

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *ptr = (int*) malloc(sizeof(int));

5 *ptr = 42;

6 printf("Before free: %d\n", *ptr);

7 free(ptr);

8 printf("After free: %d (undefined !)\n", *ptr);

9 *ptr = 100;

10 printf("Modified: %d (dangerous !)\n", *ptr);

11 return 0;

12 }

Correct:
1 free(ptr);

2 ptr = NULL;

Output:
Before free: 42

After free: 42 (undefined !)

Modified: 100 (dangerous !)

Undefined behavior - may crash or corrupt

Prof. Jyotiprakash Mishra C Programming - Deck 18 19 / 26

Program 16: Dynamic String Array

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 int main() {

5 char **arr;

6 int n = 3, i;

7 arr = (char **) malloc(n * sizeof(char *));

8 arr [0] = (char*) malloc (10 * sizeof(char));

9 arr [1] = (char*) malloc (10 * sizeof(char));

10 arr [2] = (char*) malloc (10 * sizeof(char));

11 strcpy(arr[0], "Apple");

12 strcpy(arr[1], "Banana");

13 strcpy(arr[2], "Cherry");

14 for (i = 0; i < n; i++) {

15 printf("%s\n", arr[i]);

16 }

17 for (i = 0; i < n; i++) free(arr[i]);

18 free(arr);

19 return 0;

20 }

Output:
Apple

Banana

Cherry

Array of dynamic strings

Prof. Jyotiprakash Mishra C Programming - Deck 18 20 / 26

Program 17: Flexible Array Member in Structure

1 #include <stdio.h>

2 #include <stdlib.h>

3 struct Array {

4 int size;

5 int data [];

6 };

7 int main() {

8 int n = 5, i;

9 struct Array *arr;

10 arr = (struct Array*) malloc(

11 sizeof(struct Array) + n * sizeof(int));

12 arr ->size = n;

13 for (i = 0; i < n; i++) {

14 arr ->data[i] = i * 10;

15 }

16 printf("Size: %d\n", arr ->size);

17 printf("Data: ");

18 for (i = 0; i < arr ->size; i++) {

19 printf("%d ", arr ->data[i]);

20 }

21 printf("\n");

22 free(arr);

23 return 0;

24 }

Output:
Size: 5

Data: 0 10 20 30 40

Flexible array member (C99 feature)

Prof. Jyotiprakash Mishra C Programming - Deck 18 21 / 26

Program 18: Matrix Multiplication with Dynamic Memory

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int **a, **b, **c;

5 int r = 2, c1 = 2, c2 = 2;

6 int i, j, k;

7 a = (int**) malloc(r * sizeof(int *));

8 b = (int**) malloc(c1 * sizeof(int *));

9 c = (int**) malloc(r * sizeof(int *));

10 for (i = 0; i < r; i++) a[i] = (int*) malloc(c1*sizeof(int));

11 for (i = 0; i < c1; i++) b[i] = (int*) malloc(c2*sizeof(int));

12 for (i = 0; i < r; i++) c[i] = (int*) malloc(c2*sizeof(int));

13 a[0][0]=1; a[0][1]=2; a[1][0]=3; a[1][1]=4;

14 b[0][0]=5; b[0][1]=6; b[1][0]=7; b[1][1]=8;

15 for(i=0;i<r;i++)

16 for(j=0;j<c2;j++) {

17 c[i][j]=0;

18 for(k=0;k<c1;k++) c[i][j]+=a[i][k]*b[k][j];

19 }

20 printf("Result :\n");

21 for(i=0;i<r;i++){ for(j=0;j<c2;j++) printf("%d ",c[i][j]); printf("\n");}

22 for(i=0;i<r;i++) free(a[i]); free(a);

23 for(i=0;i<c1;i++) free(b[i]); free(b);

24 for(i=0;i<r;i++) free(c[i]); free(c);

25 return 0;

26 }

Output:
Result:

19 22

43 50

Dynamic 2D arrays for computation

Prof. Jyotiprakash Mishra C Programming - Deck 18 22 / 26

Program 19: Shrinking Array with realloc

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *arr;

5 int i;

6 arr = (int*) malloc (10 * sizeof(int));

7 for (i = 0; i < 10; i++) {

8 arr[i] = i;

9 }

10 printf("Original 10 elements: ");

11 for (i = 0; i < 10; i++) {

12 printf("%d ", arr[i]);

13 }

14 arr = (int*) realloc(arr , 5 * sizeof(int));

15 printf("\nAfter shrinking to 5: ");

16 for (i = 0; i < 5; i++) {

17 printf("%d ", arr[i]);

18 }

19 printf("\n");

20 free(arr);

21 return 0;

22 }

Output:
Original 10 elements: 0 1 2 3 4 5 6 7 8 9

After shrinking to 5: 0 1 2 3 4

realloc can reduce size too

Prof. Jyotiprakash Mishra C Programming - Deck 18 23 / 26

Program 20: Linked List with Dynamic Allocation

1 #include <stdio.h>

2 #include <stdlib.h>

3 struct Node {

4 int data;

5 struct Node *next;

6 };

7 int main() {

8 struct Node *head , *temp;

9 int i;

10 head = NULL;

11 for (i = 1; i <= 5; i++) {

12 temp = (struct Node*) malloc(sizeof(struct Node));

13 temp ->data = i * 10;

14 temp ->next = head;

15 head = temp;

16 }

17 temp = head;

18 printf("List: ");

19 while (temp != NULL) {

20 printf("%d -> ", temp ->data);

21 temp = temp ->next;

22 }

23 printf("NULL\n");

24 while (head != NULL) {

25 temp = head;

26 head = head ->next;

27 free(temp);

28 }

29 return 0;

30 }

Output:
List: 50 -> 40 -> 30 -> 20 -> 10 -> NULL

Dynamic nodes, proper cleanup

Prof. Jyotiprakash Mishra C Programming - Deck 18 24 / 26

Best Practices

Always check if malloc/calloc/realloc returns NULL

Always free allocated memory when done

Set pointer to NULL after freeing

Don’t access memory after freeing (dangling pointer)

Don’t free the same pointer twice

Match every malloc/calloc with exactly one free

For 2D arrays, free in reverse order of allocation

Use valgrind or similar tools to detect memory issues

Prefer calloc when you need zero-initialized memory

Prof. Jyotiprakash Mishra C Programming - Deck 18 25 / 26

Key Takeaways

Dynamic memory allocated from heap at runtime

malloc: uninitialized, calloc: zero-initialized

realloc: resize existing allocation

free: deallocate memory

Memory leaks occur when memory not freed

Dangling pointers refer to freed memory

Double free causes undefined behavior

Essential for flexible data structures

Enables runtime size determination

Requires careful management to avoid bugs

Prof. Jyotiprakash Mishra C Programming - Deck 18 26 / 26

