C Programming - Deck 18

Dynamic Memory Allocation

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 18

Dynamic Memory Allocation

Memory allocated at runtime, not compile time
Allocated from heap memory

Size can be determined during program execution
Must be manually freed to avoid memory leaks
Four key functions: malloc, calloc, realloc, free
Header file: <stdlib.h>

Returns NULL if allocation fails

Always check for NULL before using

Prof. Jyotiprakash Mishra C Programming - Deck 18

Memory Allocation Functions

malloc(): Allocates uninitialized memory

Syntax: void* malloc(size_t size);

calloc(): Allocates zero-initialized memory

Syntax: void* calloc(size_t num, size_t size);
realloc(): Resizes previously allocated memory

Syntax: void* realloc(void* ptr, size t size);

free(): Deallocates memory

Syntax: void free(void* ptr);

Prof. Jyotiprakash Mishra C Programming - Deck 18

Program 1: Basic malloc

Output:

Value: 42
Address: 0x7£f9a8c405820

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 int *ptr; Memory freed

5 ptr = (int*)malloc(sizeof (int));

6 if (ptr == NULL) {

7 printf ("Memory allocation failed\n"); Basic allocation and deallocation
8 return 1;

9

10 *ptr = 42;

11 printf ("Value: %d\n", *ptr);

12 printf ("Address: %p\n", (voidx)ptr);
13 free(ptr);

14 printf ("Memory freed\n");

15 return O;

yotiprakash Mishra

Program 2: malloc vs calloc

Output:

malloc (uninitialized):
0 32767 0 0 1606416992

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 int *arrl = (intx*)malloc(5 * sizeof (int)); el e
R . .) calloc (zero-initialized):
5 int *arr2 = (int*)calloc(5, sizeof (int));
X . 000O0O
6 int ij;
7 printf("malloc (uninitialized):\n");
8 for (i = 0; i < 5; i++) { calloc initializes to zero, malloc doesn't
9 printf ("%d ", arri[il);
10 s
11 printf("\ncalloc (zero-initialized):\n");
12 for (i = 0; i < 5; i++) {
13 printf ("%d ", arr2[il);

15 printf ("\n");
16 free(arrl);
17 free(arr2);
18 return O0;

otiprakash Mishra

Program 3: Dynamic Array Allocation

Output:

Enter size: 5
Array: 0 10 20 30 40

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 int n, i;

5 int *arr;

6 printf ("Enter size: "); Runtime size determination
7 scanf ("%d", &n);

8 arr = (int*)malloc(n * sizeof (int));
9 if (arr == NULL) {

10 printf ("Allocation failed\n");

11 return 1;

12

13 for (i = 0; i < n; i++) {

14 arr[i]l = i * 10;

15

16 printf ("Array: ");
17 for (i = 0; i < n; i++) {

18 printf ("%d ", arr[il);
19 ¥

20 printf ("\n");

21 free(arr);

22 return 0;

23}

yotiprakash Mishra

Program 4: realloc - Resizing Array

Output:

Original: 10 20 30
Resized: 10 20 30 40 50

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 int *arr = (int*)malloc(3 * sizeof (int));

5 int i

6 arr [0] = 10; arr[1] = 20; arr[2] = 30; realloc preserves existing data
7 printf ("Original: ");

8 for (i = 0; i < 3; i++) printf("%d ", arr[il]);

9 arr = (int*)realloc(arr, 5 * sizeof (int));

10 if (arr == NULL) {

11 printf ("Reallocation failed\n");

12 return 1;

13 }

14 arr [3] = 40; arr[4] = 50;

15 printf ("\nResized: ");

16 for (i = 0; i < 5; i++) printf("%d ", arr[il);
17 printf ("\n");

18 free(arr);
19 return 0;
20 3}

yotiprakash Mishra

Program 5: Dynamic String Allocation

ONDUI A WN -

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main() {

char *str;
int len = 20;
str = (char*)malloc(len * sizeof (char));
if (str == NULL) {
printf ("Allocation failed\n");
return 1;
}
strcpy (str, "Hello World");
printf ("String: %s\n", str);
printf ("Length: %lu\n", strlen(str));
free(str);
return O;

otiprakash Mishra

Output:
String: Hello World
Length: 11

Dynamic string allocation

8/26

Program 6: Dynamic 2D Array (Method 1)

Output:

1 #include <stdio.h>
2 #include <stdlib.h>

3 int main() { 0 1 23
4 int **arr; € B 6 ¥
5 int rows = 3, cols = 4; & 0 10 di
6 int i, j;

7 arr = (int**)malloc(rows * sizeof (int*)); Array of pointers approach
8 for (i = 0; i < rows; i++) {

9 arr[i] = (int*)malloc(cols * sizeof (int));

10 }

11 for (i = 0; i < rows; i++) {

12 for (j = 0; j < cols; j++) {

13 arr[i][j] = i * cols + j;

14 ¥

15 }

16 for (i = 0; i < rows; i++) {

17 for (j = 0; j < cols; j++) {

18 printf("%2d ", arr[il[jl);

19 }

20 printf ("\n");

21 s

22 for (i = 0; i < rows; i++) free(arr[i]);

23 free(arr);

24 return O;

25}

yotiprakash Mishra

Program 7: Dynamic 2D Array (Contiguous Memory)

1 #include <stdio.h> OUtPUt'
2 #_tlnclutjie <stdlib.h> 0 1 2 3
3 int main() {
X 4 5 6 7
4 int *arr;
5 int rows = 3, cols = 4; & 0 10 di
6 int i, j;
7 arr = (int*)malloc(rows*cols*sizeof (int)) Single contiguous block
8 if (arr == NULL) {
9 printf ("Allocation failed\n");
10 return 1;
11 }
12 for (i = 0; i < rows; i++) {
13 for (j = 0; j < cols; j++) {
14 arr[i * cols + j] =i * cols + j;
15 }
16 }
17 for (i = 0; i < rows; i++) {
18 for (j = 0; j < cols; j++) {
19 printf("%2d ", arr[i * cols + jl);
20 ¥
21 printf ("\n");
22 }
23 free(arr);
24 return O;
25}

yotiprakash Mishra

Program 8: Jagged Array (Variable Row Len

1 #include <stdio.h> OUtPUt'
2 #include <stdlib.h>

3 int main() { e

4 int **arr; 19 a1 12 43
5 int rows = 3; 2OR2 22
6 int cols[] = {2, 4, 3};

7 int i, j; Each row has different length
8 arr = (int**)malloc(rows * sizeof (int*));

9 for (i = 0; i < rows; i++) {

10 arr[i] = (int*)malloc(cols[il*sizeof (int));

11 b

12 for (i = 0; i < rows; i++) {

13 for (j = 0; j < cols[il; j++) {

14 arr[i1[j] = 1 * 10 + j;

15 }

16 s

17 for (i = 0; i < rows; i++) {

18 for (j = 0; j < cols[il; j++) {

19 printf ("%d ", arr[il[jl1);

20

21 printf ("\n");

22 }

23 for (i = 0; i < rows; i++) free(arr[i]);

24 free(arr);

25 return O0;

26}

Prof. Jyotiprakash Mishra C Programming - Deck 18

Program 9: Dynamic Stru

Output:

}
int main() {
struct Point *p;
9 p = (struct Point*)malloc(sizeof (struct Point));

1 #include <stdio.h>

2 #include <stdlib.h> .

3 struct Point { Podnts (10, 200
4 int x;

5 int y; Allocating single structure
6

7

8

10 if (p == NULL) {

11 printf ("Allocation failed\n");
12 return 1;

13 ¥

14 p->x = 10;

15 p->y = 20;

16 printf ("Point: (%d, %d)\n", p->x, p->y);
17 free(p);

18 return O0;

Prof. Jyotiprakash Mishra C Programming - Deck 18

Program 10: Dynamic

Output:

1 #include <stdio.h>
2 #i lude <stdlib.h>

jnetude cstdil Roll: 1, Marks: 85
3 struct Student {

. Roll: 2, Marks: 90
4 int roll;

. Roll: 3, Marks: 78
5 int marks;
6 };
7 int main() { Array of structures on heap
8 struct Student *arr;
9 int n = 3, i;
10 arr = (struct Student*)malloc(
11 n * sizeof (struct Student));

12 arr [0].roll = 1; arr[0].marks = 85;
13 arr [1].roll = 2; arr[1].marks = 90;
14 arr [2] .roll = 3; arr[2].marks = 78;

15 for (i = 0; i < mn; i++) {

16 printf ("Roll: %d, Marks: %d\n",
17 arr[i].roll, arr[i].marks);
18 }

19 free(arr);

20 return 0;

21 %}

otiprakash Mishra

Program 11: Growing Array with realloc

Output:

Array (5 elements): 10 20 30 40 50

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 int *arr = NULL;
5 int size = 0, capacity = 0; Dynamic array that grows automatically
6 int i, val;

7 int inputs[] = {10, 20, 30, 40, 50};

8 for (i = 0; i < 5; i++) {

9 if (size == capacity) {

10 capacity = (capacity == 0) ? 1 : capacity * 2;
11 arr = (int*)realloc(arr,

12 capacity * sizeof (int));

13 }

14 arr[size++] = inputsl[il;

15

16 printf ("Array (%d elements): ", size);
17 for (i = 0; i < size; i++) {

18 printf ("%d ", arr[il);

19 ¥

20 printf ("\n");

21 free(arr);

22 return 0;

23}

yotiprakash Mishra

Memory allocated but never freed
Program keeps consuming memory

Eventually causes performance issues or crashes

Common causes:

o Forgetting to call free()

e Losing pointer to allocated memory
o Early return without freeing

o Exception/error without cleanup

Prevention: Always pair malloc/calloc with free
Set pointer to NULL after freeing

Use valgrind or similar tools to detect leaks

Prof. Jyotiprakash Mishra C Programming - Deck 18

Program 12: Memory Leak Example (WRONG

1 #include <stdio.h> OUtPUt'
2 #incl < 1ib.h>
1§c ude stdlib Allocated memory
3 void leak() { Allocated
4 int *ptr = (int*)malloc (100 * sizeof (int)); AECuEE Lo ORy
N " " Allocated memory
5 printf ("Allocated memory\n");
Allocated memory
6)
: ; Allocated memory
7 int main() {
X .. Memory leaked 5 times!
8 int i
9 for (i = 0; i < 5; i++) {
10 leak (); Memory not freed in leak() function
11 }
12 printf ("Memory leaked 5 times!\n");
13 return O;
14 }

Correct version:

1 void noLeak() {

2 int #ptr = (int*)malloc (100 * sizeof (int));
3 printf ("Allocated memory\n");

4 free(ptr);

5}

yotiprakash Mishra

Program 13: Lost Pointer (Memory Leak)

1 #include <stdio.h> OUtPUt'

2 #i lude <stdlib.h>

3 i;:Cm;i:()s{ * Allocated at: 0x7£9a8c405820
4 int #ptrl = (int*)malloc (10 * sizeof (int)); g?w slliiatlzf‘: 0:{7f§a3<':405850
5 printf ("Allocated at: %p\n", (voidx)ptrl); irst atiocation leaked:

6 ptrl = (intx*)malloc (20 * sizeof (int));

7 printf ("New allocation: %p\n", (voidx)ptribst reference to first allocation

8 printf ("First allocation leaked!\n");

9 free(ptri);
10 return 0;
11)

Correct:

1 int *ptrl = (int*)malloc (10 * sizeof (int));

2 free(ptril);

3 ptrl = (int*)malloc (20 * sizeof (int));

4 free(ptrl);

yotiprakash Mishra

Program 14: Double Free (WRONG)

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *ptr = (int*)malloc(sizeof (int));
5 *ptr = 42;

6 printf ("Value: %d\n", *ptr);

7 free(ptr);

8 printf ("Freed once\n");

9 free(ptr);

10 printf ("Freed twice - CRASH!\n");
11 return 0;

12}

Correct:

1 free(ptr);

2 ptr = NULL;

3 if (ptr != NULL) {

4 free(ptr);

5}

yotiprakash Mishra

Output:
Value: 42

Freed once
Segmentation fault (core dumped)

Never free same pointer twice!

18/26

: Using Freed Memory (Dangling Pointer)

1 #include <stdio.h> OUtPUt'
2 i < ib.h>
3 g;:cizgz()szdllb b Before free: 42

: i !
4 int *ptr = (int*)malloc(sizeof (int)); gf;?;‘fiéeiog2(;undef1ne?5)
5 eptr = 42; odified: angerous !
6 printf ("Before free: %d\n", *ptr);
7 free(ptr); Undefined behavior - may crash or corrupt
8 printf ("After free: %d (undefined!)\n", *ptr);
9 *ptr = 100;
10 printf ("Modified: %d (dangerous!)\n", *ptr);
11 return O;
12}
Correct:

1 free(ptr);
2 ptr = NULL;

Prof. Jyotiprakash Mishra C Programming - Deck 18

Program 16: Dynamic String Array

Output:

Apple
Banana
Cherry

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main() {
char *x*arr;
int n = 3, ij;
arr = (char**)malloc(n * sizeof (char*)); Array of dynamic strings
arr [0] = (char*)malloc (10 * sizeof (char));
9 arr [1] = (char#*)malloc (10 * sizeof (char));
10 arr [2] = (char*)malloc (10 * sizeof (char));
11 strcpy (arr [0], "Apple");
12 strcpy (arr[1], "Banana");
13 strcpy (arr[2], "Cherry");
14 for (i = 0; i < n; i++) {

PN A WN R

15 printf ("%s\n", arr([il);

16 }

17 for (i = 0; i < n; i++) free(arr[il);
18 free(arr);

19 return 0;

20 ¥

yotiprakash Mishra

Program 17: Flexible Array Member in Structure

1 #include <stdio.h> OUtPUt'
2 #include <stdlib.h> .
3 struct Array { S e
. X Data: 0 10 20 30 40
4 int size;
5 int datal[];
6 1} Flexible array member (C99 feature)
7 int main() {
8 int n = 5, i;
9 struct Array *arr;
10 arr = (struct Array*)malloc(
11 sizeof (struct Array) + n * sizeof (int));
12 arr->size = n;
13 for (i = 0; i < mn; i++) {
14 arr->datali] = i * 10;
15 }

16 printf ("Size: %d\n", arr->size);
17 printf ("Data: ");

18 for (i = 0; i < arr->size; i++) {
19 printf ("%d ", arr->datalil);

20

21 printf ("\n");

22 free(arr);

23 return O0;

24}

yotiprakash Mishra

Multiplication with Dynamic Memory

1 #include <stdio.h> OUtPUt'
2 #include <stdlib.h>
: ; Result:
3 int main() {
4 int **a, **b, *x*c; 1o 22
5 int r = 2, c1 = 2, c2 = 2; 28 50
6 dint i, j, k;
7 a = (int**)malloc(r * sizeof (int*)); Dynamic 2D arrays for computation
8 b = (int**)malloc(cl * sizeof (int*));
9 ¢ = (int*x)malloc(r * sizeof (intx));
10 for (i = 0; i < r; i++) ali] = (int*)malloc(cl*sizeof (int));
11 for (i = 0; i < cl; i++) b[i] = (int*)malloc(c2*sizeof (int));
12 for (i = 0; i < r; i++) c[i] = (int*)malloc(c2*sizeof (int));

13 a[0][0]=1; al[0][1]1=2; a[1]1[01=3; al1]l[1]1=4;
14 b[0][0]=5; b[0][1]l=6; b[1]1[0]=7; b[1][1]1=8;

15 for (i=0;i<r;i++)

16 for(j=0;j<c2;j++) {

17 c[il[j1=0;

18 for(k=0;k<cl;k++) cl[il[jl+=alil[kI*bl[k]1[j];
19 }

20 printf ("Result:\n");
21 for(i=0;i<r;i++){for(j=0;j<c2;j++)printf("%d ",c[i]1[jl1);printf("\n");}

22 for (i=0;i<r;i++) free(alil);free(a);
23 for (i=0;i<cl;i++)free(b[il);free(b);
24 for(i=0;i<r;i++)free(cl[il]);free(c);
25 return 0;

26}

Prof. Jyotiprakash Mishra C Programming

Program 19: Shrinking Array with realloc

Output:

Original 10 elements:
After shrinking to 5:

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 int *arr;

5 int i;

6 arr = (int*)malloc (10 * sizeof (int)); realloc can reduce size too
7 for (i = 0; i < 10; i++) {

8 arr[i] = i;

9 ¥

10 printf ("Original 10 elements: ");
11 for (i = 0; i < 10; i++) {

12 printf ("%d ", arr[il);
13 }
14 arr = (intx*)realloc(arr, 5 * sizeof (int));

15 printf ("\nAfter shrinking to 5: ");
16 for (i = 0; i < 5; i++) {

17 printf ("%d ", arr[i]);

18 }

19 printf ("\n");

20 free(arr);

21 return O;

yotiprakash Mishra

Program 20: Linked List with Dynamic Allocation

1 #include <stdio.h> OUtPUt'

§ Z;:ﬁi:dzogztfllb'h> List: 50 -> 40 -> 30 -> 20 -> 10 -> NULL
4 int data;

5 struct Node *next; Dynamic nodes, proper cleanup
6 1}

7 int main() {

8 struct Node *head, *temp;

9 int i;

10 head = NULL;

11 for (i = 1; i <= 5; i++) {

12 temp = (struct Node*)malloc(sizeof (struct Node));

13 temp->data = i * 10;

14 temp->next = head;

15 head = temp;

16 }

17 temp = head;

18 printf ("List: ");

19 while (temp != NULL) {

temp->data);

NULL) {

20 printf("%d -> ",
21 temp = temp->next;
22 s

23 printf ("NULL\n");

24 while (head !=

25 temp = head;

26 head = head->next;
27 free(temp);

28 }

29 return 0;

30 ¥

otiprakash Mishra

Best Practices

Always check if malloc/calloc/realloc returns NULL
Always free allocated memory when done

Set pointer to NULL after freeing

Don't access memory after freeing (dangling pointer)
Don't free the same pointer twice

Match every malloc/calloc with exactly one free

For 2D arrays, free in reverse order of allocation

Use valgrind or similar tools to detect memory issues

Prefer calloc when you need zero-initialized memory

Prof. Jyotiprakash Mishra C Programming - Deck 18

Key Takeaways

Dynamic memory allocated from heap at runtime
malloc: uninitialized, calloc: zero-initialized
realloc: resize existing allocation

free: deallocate memory

Memory leaks occur when memory not freed
Dangling pointers refer to freed memory

Double free causes undefined behavior

Essential for flexible data structures

Enables runtime size determination

Requires careful management to avoid bugs

Prof. Jyotiprakash Mishra C Programming - Deck 18 26 /26

