C Programming - Deck 19

Stack vs Heap Memory

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 19 1/27

Memory Layout of C Program

Text Segment: Program code (instructions)
Data Segment: Global and static variables

Heap: Dynamic memory (grows upward)

Stack: Local variables, function calls (grows downward)

Stack and heap grow towards each other
@ Stack overflow: when stack grows too large
@ Heap exhaustion: when heap runs out of memory

@ Understanding this is crucial for efficient programming

Prof. Jyotiprakash Mishra C Programming - Deck 19 2/27

Stack Memory

Automatic allocation and deallocation

LIFO (Last In First Out) structure

Stores local variables and function parameters
Stores return addresses for function calls

Fast access (CPU manages it)

Limited size (typically 1-8 MB)

Memory freed automatically when function returns

Cannot access after function returns

Prof. Jyotiprakash Mishra C Programming - Deck 19 3/27

Heap Memory

Manual allocation using malloc/calloc
Manual deallocation using free

No specific order (fragmented)

Slower access than stack

Much larger than stack (limited by RAM)
Memory persists until explicitly freed

Can access across function boundaries

Requires programmer discipline

Prof. Jyotiprakash Mishra C Programming - Deck 19

Stack vs Heap Comparison

Aspect Stack Heap

Allocation Automatic Manual (malloc/calloc)
Deallocation Automatic Manual (free)

Speed Fast Slower

Size Small (1-8 MB) | Large (RAM limit)
Access LIFO Random

Lifetime Function scope Until freed
Fragmentation No Yes

Overflow Stack overflow Heap exhaustion
Management Compiler Programmer

yotiprakash Mishra

Program 1: Stack Variable Scope

=
COWNOUTAWN K

11

#include <stdio.h>
void func() {
int x = 10;
printf ("Inside func: x = %d\n", x);
printf ("Address: %p\n", (void*)&x);
¥
int main() {
func ();
printf ("Back in main\n");
return O;

}

Prof. Jyotiprakash Mishra

Output:

Inside func: x = 10
Address: Ox7ffeeb3c4dalc
Back in main

x is destroyed when func returns

C Programming - Deck 19

Program 2: Returning Local Variable

Address (WRONG)

#include <stdio.h>
int* func() {
int x = 42;
printf ("Inside func:
x, (void#*)&x);
return &x;

%d at %p\n",

s

int main() {

9 int *ptr = func();

printf ("In main: %d (undefined!)\n",
11 return O;

12}

ONDUI A WN R

*ptr);

Warning: Function returns address
of local variable

Prof. Jyotiprakash Mishra

C Programming

Output:

Inside func:
In main:

42 at Ox7ffeeb3cdalc

42 (undefined!)

Dangling pointer - x destroyed after return

Program 3: Heap Memory Persists Across Functions

WNOUTAWN

9 3}

#include <stdio.h>
#include <stdlib.h>
int* func() {

int *ptr = (int*)malloc(sizeof (int));

*ptr = 42;

printf ("Inside func: %d at %p\n",
ptr, (void)ptr);

return ptr;

10 int main() {

int *p = func();

Output:
Inside func: 42 at 0x7£f9a8c405820

In main: 42 at 0x7£9a8c405820
Heap memory persists!

Heap memory survives function return

printf ("In main: %d at %p\n", *p, (void*)p);

printf ("Heap memory persists!\n");
free(p);
return O;

yotiprakash Mishra

Deck 19

8/27

Program 4: Stack Frame - Function Call

#include <stdio.h>
void funcC() {
int ¢ = 30;
printf ("C: c=4d at %p\n", c,

void funcB() {
int b = 20;
printf ("B: b=%d at %p\n", b,
9 funcC(Q);
10 printf ("Back in B\n");
11 3}
12 void funcA() {
13 int a = 10;
14 printf ("A: a=Jd at %p\n", a,
15 funcB();
16 printf ("Back in A\n");
17 ¥
18 int main() {
19 funcA ();
20 return 0;

ONOU A WN

yotiprakash Mishra

(void*)&c);

(void*)&b);

(void*)&a);

Output:

A: a=10 at Ox7ffeeb3cdalc
B: b=20 at O0x7ffeeb3c4alc
C: c=30 at Ox7ffeeb3c49ec
Back in B
Back in A

Stack grows downward with each call

Deck 19

Program 5: Stack Variable

1
2
3
4
5
6
7
8

#include <stdio.h>
void func() {
int x = 10;
printf("Call 1: x = %d at %p\n",
x, (void#*)&x);
¥
int main() {
func ();
func ();
func ();

Lifetime

Output:
Call 1: x = 10 at Ox7ffeeb3cdalc
Call 1: x = 10 at Ox7ffeeb3cdalc
Call 1: x = 10 at Ox7ffeeb3cdalc
Each call gets fresh stack space

Same address reused each call

printf ("Each call gets fresh stack space\n");

return O;

yotiprakash Mishra

Deck 19

Program 6: Static vs Stack Variables

0N A WN

#include <stdio.h>
void func() {
int stack_var = 0;
static int static_var = 0;
stack_var++;
static_var++;

printf ("Stack: %d, Static: %d\n",

stack_var, static_var);

int main() {
func ();
func ();
func ();
return O;

otiprakash Mishra

Output:

Stack: 1, Static: 1
Stack: 1, Static:
Stack: 1, Static: 3

N

Static persists, stack resets each call

Deck 19

Program 7: Large Stack Allocation

Output:

Creating large stack array
Large stack array created
First: 1, Last: 100000
Size: 400000 bytes

Array destroyed on return

1 #include <stdio.h>

2 void func() {

3 int arr [100000];

4 arr [0] = 1;

5 arr [99999] = 100000;

6 printf ("Large stack array created\n");
7 printf ("First: J%d, Last: %d\n",

8 arr [0], arr[99999]1);

9 printf ("Size: %lu bytes\n", Large arrays can cause stack overflow
10 sizeof (arr));
11}

12 int main() {
13 printf ("Creating large stack array\n");
14 func ();

15 printf ("Array destroyed on return\n");
16 return O0;
17 ¥

otiprakash Mishra Deck 19 12

Program 8: Heap Memory Example

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

[CIENEONE N

int *heap_var;

int stack_var = 10;

heap_var = (int*)malloc(sizeof (int));

*heap_var = 20;

printf ("Stack var: %d at %p\n",
stack_var, (void*)&stack_var);

printf ("Heap var: %d at %p\n",
heap_var, (void)heap_var);

printf ("Pointer itself at: %p\n",
(void#*)&heap_var);

free(heap_var);

return O;

otiprakash Mishra

Output:

Stack var: 10 at Ox7ffeeb3cdalc
Heap var: 20 at 0x7£9a8c405820
Pointer itself at: O0x7ffeeb3c4all

Different address ranges for stack/heap

Deck 19 13

Program 9: Stack Overflow Example

#include <stdio.h>
int count = 0;
void recursive() {

int x;

count ++;

if (count % 10000 == 0) {

printf ("Depth: %d, addr: %p\n",
count , (void*)&x);

WNOUTAWN R

9 }

10 recursive ();

11}

12 int main() {

13 printf ("Starting infinite recursion\n");
14 recursive ();

15 return O;

16 ¥

Warning: This will crash with
stack overflow

yotiprakash Mishra

Output:
Starting infinite recursion
Depth: 10000, addr: Ox7ffeebbclalc
Depth: 20000, addr: Ox7ffeeb5741alc

Segmentation fault (stack overflow)

Stack has limited size

Program 10: Heap vs Stack - S

Output:

1 #include <stdio.h>

2 #include <stdlib.h> Stack: Stack String at Ox7ffeeb3c4a00
3 #include <string.h> Heap: Heap Stri 0x7£9a8c405820
4 int main() { it P ring at Ox ase

5 char stack_str [20] = "Stack String";

6 char *heap_str; Strings can be on stack or heap

7 heap_str = (char*)malloc(20 * sizeof (char));

8 strcpy (heap_str, "Heap String");

9 printf ("Stack: %s at %p\n",

10 stack_str, (voidx)stack_str);

11 printf ("Heap: %s at %p\n",

12 heap_str, (void*)heap_str);

13 free(heap_str);

14 return 0;

15 %

otiprakash Mishra i Deck 19

Program 11: Multiple Heap Allocations

Output:

1 #include <stdio.h>

2 #include <stdlib.h>
3 int main() { pl: 10 at 0x7f9a8c405820

int *pl, *p2, *p3; p2: 20 at 0x7£9a8c405840

4
5 pl = (int*)malloc(sizeof (int)); p3: 30 at 0x7f9a85405860
6 p2 = (int*)malloc(sizeof (int)); Heap not contiguous

7 p3 = (int*)malloc(sizeof (int));

8 *pl = 10; *p2 = 20; *p3 = 30; Heap allocations may be scattered

9 printf ("pl: %d at %p\n", *pl, (void*)pl);

10 printf ("p2: %d at %p\n", *p2, (voidx)p2);

11 printf ("p3: %d at %p\n", *p3, (void*)p3);

12 printf ("Heap not contiguous\n");
13 free(pl); free(p2); free(p3);
14 return 0;

15 %

yotiprakash Mishra

Program 12: Stack Array vs Heap Array

Output:

Stack array at: Ox7ffeeb3c4al0
Heap array at: 0x7f9a8c405820

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 int stack_arr[5] = {1, 2, 3, 4, 5};

5 int *heap_arrf 1 t i Stack: 1 2 3 4 5

6 X . - Heap: 10 20 30 40 50
int i;

7 heap_arr = (int*)malloc(5 * sizeof (int));

8 for (i = 0; i < 5; i++) { Arrays can be on stack or heap

9 heap_arr[i]l = (i + 1) * 10;

10 }

11 printf ("Stack array at: %p\n",

12 (void*)stack_arr);

13 printf ("Heap array at: %p\n",

14 (void*)heap_arr);

15 printf ("Stack: ");

16 for (i=0; i<5; i++) printf("%d ", stack_arr[il);

17 printf ("\nHeap: ");

18 for (i=0; i<5; i++) printf("%d ", heap_arr[il);

19 printf ("\n");
20 free(heap_arr);
21 return 0;

yotiprakash Mishra

Program 13: Structure on Stack vs Heap

Output:

Stack: (10,20) at Ox7ffeeb3c4all
Heap: (30,40) at 0x7f9a8c405820

#include <stdio.h>
#include <stdlib.h>
struct Point {

int x;

int y;
}s;
int main() {

struct Point stack_pt = {10, 20};
9 struct Point *heap_pt;
10 heap_pt = (struct Point#*)malloc(
11 sizeof (struct Point));
12 heap_pt->x = 30;
13 heap_pt->y = 40;
14 printf ("Stack: (%d,%d) at %p\n",

Structures can be on stack or heap

PN A WN R

15 stack_pt.x, stack_pt.y, (void*)&stack_pt);
16 printf ("Heap: (%d,%d) at %p\n",

17 heap_pt->x, heap_pt->y, (voidx*)heap_pt);
18 free(heap_pt);

19 return 0;

20 ¥

yotiprakash Mishra

Deck 19 18 /27

Program 14: Memory Address Comparison

Output:

1 #include <stdio.h>

i < ib.h>
2 #include <stdlib.h Global: 0x10a8e4020
3 int global_var = 100; .
4 int main() { Static: 0x10a8e4024

. Stack: Ox7ffeeb3cdalc

5 int stack_var = 10; H . 0x7£928c405820
6 int *heap_var = (int*)malloc(sizeof (int)); eap: Ox ase
7 static int static_var = 50;
8

*heap_var = 20; Different memory regions

9 printf ("Global: %p\n", (void*)&global_var);

10 printf ("Static: %p\n", (void#*)&static_var Each segment has distinct address range
11 printf ("Stack: %p\n", (void*)&stack_var);

12 printf ("Heap: %p\n", (void#*)heap_var);

13 printf ("\nDifferent memory regions\n");
14 free(heap_var);

15 return O;

16}

otiprakash Mishra

Program 15: Function Parameter Passing

1 #include <stdio.h>

2 void func(int x,

3
4
5
6
P
8 }

int *p) {

printf ("In func:\n");

printf (" x (value):

x, (void#*)&x);
printf ("
(pointer): %p\n",

(void*)p);

printf (" xp (value): %d\n",

9 int main() {

15

17 ¥

int a = 10;

(void*)&a);

int b = 20;

printf ("In main:\n");
printf ("

%d at Jp\n", a,
printf ("

#d at %p\n", b,
func(a, &b);
return O;

yotiprakash Mishra

(void*)&b);

%d at %p\n",

*p);

Output:

In main:
a: 10 at Ox7ffeeb3cdalc
b: 20 at O0x7ffeeb3c4als8
In func:
x (value): 10 at Ox7ffeeb3c49fc
p (pointer): Ox7ffeeb3c4al8
*p (value): 20

Parameters copied to function's stack frame

Deck 19

Program 16: Heap Fragmentation

1 #include <stdio.h> OUtPUt-
2 #i lude <stdlib.h>
3 i;:Cm:i:()s{ ' Initial: 0x7f9a8c405820
int *pl, *p2, *p3, *p4; 0x7£928c405840
: ; (i 0x7£9a8c405860

pl = (int*)malloc(sizeof (int));

4

5 X
6 p2 = (int*)malloc(sizeof (int)); ARter Zxeoilng [
7

8

New p4: 0x7£9a8c405840

p3 = (int*)malloc(sizeof (int));
p4 may reuse p2’s space

printf ("Initial: %p %p %p\n",
9 (void#*)pl, (void*)p2, (void*)p3);
10 free(p2); Heap memory can be fragmented and reused
11 printf ("After freeing p2\n");
12 p4 = (int*)malloc(sizeof (int));
13 printf ("New p4: %p\n", (void*)p4);
14 printf ("p4 may reuse p2’s space\n");
15 free(pl); free(p3); free(p4);
16 return 0;

yotiprakash Mishra

Program 17: Dangling Pointer After Function Return

O~NOU A WN

#include <stdio.h>
int* getStackAddress() {
int local = 42;
return &local;
s
int* getHeapAddress () {
int *ptr = (int*)malloc(sizeof (int));
*ptr = 42;
return ptr;

int main() {
int *bad = getStackAddress();
int *good = getHeapAddress();
printf ("Stack (BAD): %d (undefined)\n",
printf ("Heap (GOOD): %d\n", *good);
free(good);
return O;

Prof. Jyotiprakash Mishra

Output:
Stack (BAD): 42 (undefined)
Heap (GOOD): 42

Heap persists, stack doesn't

*bad) ;

C Programming - Deck 19

Program 18: Stack Size Demonstration

Output:

Measuring stack growth

1 #include <stdio.h>
2 void printStackUsage(int depth) {

3 int x;
: : : Depth 0: O bytes from start
4 tat t *f t = NULL;
s ot (tiree —w WOLL) € Depth 1000: 32000 bytes from start
6 first = &x; Depth 2000: 64000 bytes from start
7 ¥ o
8 if (depth % 1000 == 0) { Depth 10000: 320000 bytes from start
9 printf ("Depth %d: %1d bytes from start\n",
10 depth, (char*)first - (char*)&x); Stack grows with recursion depth
11

12 if (depth < 10000) {
13 printStackUsage (depth + 1);
}

15 ¥

16 int main() {

17 printf ("Measuring stack growth\n");
18 printStackUsage (0);

19 return 0;

20 3}

otiprakash Mishra

Program 19: Choosing Stack vs Heap

Output:

Small: Use stack
Large: Use heap
Choose based on size and lifetime

#include <stdio.h>

#include <stdlib.h>

void processSmallData() {
int datal[10];

int i;
for (i = 0; i < 10; i++) datalil = i;
printf ("Small: Use stack\n"); Stack for small/short, heap for large/long

ONOU A WN

}

9 void processLargeData() {

10 int *data = (int*)malloc (1000000*sizeof (int));
11 int i

12 for (i = 0; i < 1000000; i++) datal[i] = i;
13 printf ("Large: Use heap\n");

14 free(data);

15 ¥

16 int main() {

17 processSmallData();

18 processLargeData ();

19 printf ("Choose based on size and lifetime\n");
20 return O;
21}

yotiprakash Mishra i Deck 19

Program 20: Complete Stack vs Heap Example

Output:

Stack list: destroyed on return
Heap list: persists, must free

#include <stdio.h>
#include <stdlib.h>
struct Data {

int value;

struct Data *next;
}; Stack for temporary, heap for persistent data
void stackList () {

struct Data nl = {1, NULL};
9 struct Data n2 = {2, &nil};
10 struct Data n3 = {3, &n2};

WNOU A WN

11 printf ("Stack list: destroyed on return\n");
12

13 struct Data* heapList () {

14 struct Data *nl, *n2, *n3;

15 nli=(struct Datax*)malloc(sizeof (struct Data));

16 n2=(struct Data*)malloc(sizeof (struct Data));
17 n3=(struct Data*)malloc(sizeof (struct Data));
18 ni->value=1; nl->next=NULL;

19 n2->value=2; n2->next=nil;
20 n3->value=3; n3->next=n2;
21 return n3;

22}

23 int main() {

24 stackList ();

25 struct Data *1list = heapList();

26 printf ("Heap list: persists, must free\n");

27 while(list){struct Data *t=list;list=list->next;free(t);}
28 return 0;

otiprakash Mishra

When to Use Stack vs Heap

@ Use Stack when:
o Data size is small and known at compile time
Data lifetime matches function scope
Need fast allocation/deallocation
Don't need to return data from function

@ Use Heap when:

Data size is large or unknown at compile time

Data must persist beyond function scope

Need to return data from function

Building dynamic data structures (linked lists, trees)
Size determined at runtime

Prof. Jyotiprakash Mishra C Programming - Deck 19 26 /27

Key Takeaways

Stack: automatic, LIFO, fast, limited size
Heap: manual, flexible, slower, large size
Stack variables destroyed when function returns

Heap memory persists until explicitly freed

°
°

°

°

o Never return address of local (stack) variable

@ Stack overflow from deep recursion or large locals
@ Heap exhaustion from too many allocations

@ Choose based on size, lifetime, and scope needs
@ Understanding this prevents common bugs

°

Critical for efficient memory management

Prof. Jyotiprakash Mishra C Programming - Deck 19 27 /27

