
C Programming - Deck 19
Stack vs Heap Memory

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 19 1 / 27

Memory Layout of C Program

Text Segment: Program code (instructions)

Data Segment: Global and static variables

Heap: Dynamic memory (grows upward)

Stack: Local variables, function calls (grows downward)

Stack and heap grow towards each other

Stack overflow: when stack grows too large

Heap exhaustion: when heap runs out of memory

Understanding this is crucial for efficient programming

Prof. Jyotiprakash Mishra C Programming - Deck 19 2 / 27

Stack Memory

Automatic allocation and deallocation

LIFO (Last In First Out) structure

Stores local variables and function parameters

Stores return addresses for function calls

Fast access (CPU manages it)

Limited size (typically 1-8 MB)

Memory freed automatically when function returns

Cannot access after function returns

Prof. Jyotiprakash Mishra C Programming - Deck 19 3 / 27

Heap Memory

Manual allocation using malloc/calloc

Manual deallocation using free

No specific order (fragmented)

Slower access than stack

Much larger than stack (limited by RAM)

Memory persists until explicitly freed

Can access across function boundaries

Requires programmer discipline

Prof. Jyotiprakash Mishra C Programming - Deck 19 4 / 27

Stack vs Heap Comparison

Aspect Stack Heap
Allocation Automatic Manual (malloc/calloc)
Deallocation Automatic Manual (free)
Speed Fast Slower
Size Small (1-8 MB) Large (RAM limit)
Access LIFO Random
Lifetime Function scope Until freed
Fragmentation No Yes
Overflow Stack overflow Heap exhaustion
Management Compiler Programmer

Prof. Jyotiprakash Mishra C Programming - Deck 19 5 / 27

Program 1: Stack Variable Scope

1 #include <stdio.h>

2 void func() {

3 int x = 10;

4 printf("Inside func: x = %d\n", x);

5 printf("Address: %p\n", (void *)&x);

6 }

7 int main() {

8 func ();

9 printf("Back in main\n");

10 return 0;

11 }

Output:
Inside func: x = 10

Address: 0x7ffeeb3c4a1c

Back in main

x is destroyed when func returns

Prof. Jyotiprakash Mishra C Programming - Deck 19 6 / 27

Program 2: Returning Local Variable Address (WRONG)

1 #include <stdio.h>

2 int* func() {

3 int x = 42;

4 printf("Inside func: %d at %p\n",

5 x, (void *)&x);

6 return &x;

7 }

8 int main() {

9 int *ptr = func ();

10 printf("In main: %d (undefined !)\n", *ptr);

11 return 0;

12 }

Warning: Function returns address
of local variable

Output:
Inside func: 42 at 0x7ffeeb3c4a1c

In main: 42 (undefined !)

Dangling pointer - x destroyed after return

Prof. Jyotiprakash Mishra C Programming - Deck 19 7 / 27

Program 3: Heap Memory Persists Across Functions

1 #include <stdio.h>

2 #include <stdlib.h>

3 int* func() {

4 int *ptr = (int*) malloc(sizeof(int));

5 *ptr = 42;

6 printf("Inside func: %d at %p\n",

7 *ptr , (void*)ptr);

8 return ptr;

9 }

10 int main() {

11 int *p = func ();

12 printf("In main: %d at %p\n", *p, (void*)p);

13 printf("Heap memory persists !\n");

14 free(p);

15 return 0;

16 }

Output:
Inside func: 42 at 0x7f9a8c405820

In main: 42 at 0x7f9a8c405820

Heap memory persists!

Heap memory survives function return

Prof. Jyotiprakash Mishra C Programming - Deck 19 8 / 27

Program 4: Stack Frame - Function Call

1 #include <stdio.h>

2 void funcC () {

3 int c = 30;

4 printf("C: c=%d at %p\n", c, (void *)&c);

5 }

6 void funcB () {

7 int b = 20;

8 printf("B: b=%d at %p\n", b, (void *)&b);

9 funcC ();

10 printf("Back in B\n");

11 }

12 void funcA() {

13 int a = 10;

14 printf("A: a=%d at %p\n", a, (void *)&a);

15 funcB ();

16 printf("Back in A\n");

17 }

18 int main() {

19 funcA ();

20 return 0;

21 }

Output:
A: a=10 at 0x7ffeeb3c4a2c

B: b=20 at 0x7ffeeb3c4a0c

C: c=30 at 0x7ffeeb3c49ec

Back in B

Back in A

Stack grows downward with each call

Prof. Jyotiprakash Mishra C Programming - Deck 19 9 / 27

Program 5: Stack Variable Lifetime

1 #include <stdio.h>

2 void func() {

3 int x = 10;

4 printf("Call 1: x = %d at %p\n",

5 x, (void *)&x);

6 }

7 int main() {

8 func ();

9 func ();

10 func ();

11 printf("Each call gets fresh stack space\n");

12 return 0;

13 }

Output:
Call 1: x = 10 at 0x7ffeeb3c4a1c

Call 1: x = 10 at 0x7ffeeb3c4a1c

Call 1: x = 10 at 0x7ffeeb3c4a1c

Each call gets fresh stack space

Same address reused each call

Prof. Jyotiprakash Mishra C Programming - Deck 19 10 / 27

Program 6: Static vs Stack Variables

1 #include <stdio.h>

2 void func() {

3 int stack_var = 0;

4 static int static_var = 0;

5 stack_var ++;

6 static_var ++;

7 printf("Stack: %d, Static: %d\n",

8 stack_var , static_var);

9 }

10 int main() {

11 func ();

12 func ();

13 func ();

14 return 0;

15 }

Output:
Stack: 1, Static: 1

Stack: 1, Static: 2

Stack: 1, Static: 3

Static persists, stack resets each call

Prof. Jyotiprakash Mishra C Programming - Deck 19 11 / 27

Program 7: Large Stack Allocation

1 #include <stdio.h>

2 void func() {

3 int arr [100000];

4 arr [0] = 1;

5 arr [99999] = 100000;

6 printf("Large stack array created\n");

7 printf("First: %d, Last: %d\n",

8 arr[0], arr [99999]);

9 printf("Size: %lu bytes\n",

10 sizeof(arr));

11 }

12 int main() {

13 printf("Creating large stack array\n");

14 func ();

15 printf("Array destroyed on return\n");

16 return 0;

17 }

Output:
Creating large stack array

Large stack array created

First: 1, Last: 100000

Size: 400000 bytes

Array destroyed on return

Large arrays can cause stack overflow

Prof. Jyotiprakash Mishra C Programming - Deck 19 12 / 27

Program 8: Heap Memory Example

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *heap_var;

5 int stack_var = 10;

6 heap_var = (int*) malloc(sizeof(int));

7 *heap_var = 20;

8 printf("Stack var: %d at %p\n",

9 stack_var , (void *)& stack_var);

10 printf("Heap var: %d at %p\n",

11 *heap_var , (void*) heap_var);

12 printf("Pointer itself at: %p\n",

13 (void *)& heap_var);

14 free(heap_var);

15 return 0;

16 }

Output:
Stack var: 10 at 0x7ffeeb3c4a1c

Heap var: 20 at 0x7f9a8c405820

Pointer itself at: 0x7ffeeb3c4a10

Different address ranges for stack/heap

Prof. Jyotiprakash Mishra C Programming - Deck 19 13 / 27

Program 9: Stack Overflow Example

1 #include <stdio.h>

2 int count = 0;

3 void recursive () {

4 int x;

5 count ++;

6 if (count % 10000 == 0) {

7 printf("Depth: %d, addr: %p\n",

8 count , (void *)&x);

9 }

10 recursive ();

11 }

12 int main() {

13 printf("Starting infinite recursion\n");

14 recursive ();

15 return 0;

16 }

Warning: This will crash with
stack overflow

Output:
Starting infinite recursion

Depth: 10000 , addr: 0x7ffee5bc1a0c

Depth: 20000 , addr: 0x7ffee5741a0c

...

Segmentation fault (stack overflow)

Stack has limited size

Prof. Jyotiprakash Mishra C Programming - Deck 19 14 / 27

Program 10: Heap vs Stack - String Storage

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 int main() {

5 char stack_str [20] = "Stack String";

6 char *heap_str;

7 heap_str = (char*) malloc (20 * sizeof(char));

8 strcpy(heap_str , "Heap String");

9 printf("Stack: %s at %p\n",

10 stack_str , (void*) stack_str);

11 printf("Heap: %s at %p\n",

12 heap_str , (void*) heap_str);

13 free(heap_str);

14 return 0;

15 }

Output:
Stack: Stack String at 0x7ffeeb3c4a00

Heap: Heap String at 0x7f9a8c405820

Strings can be on stack or heap

Prof. Jyotiprakash Mishra C Programming - Deck 19 15 / 27

Program 11: Multiple Heap Allocations

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *p1, *p2 , *p3;

5 p1 = (int*) malloc(sizeof(int));

6 p2 = (int*) malloc(sizeof(int));

7 p3 = (int*) malloc(sizeof(int));

8 *p1 = 10; *p2 = 20; *p3 = 30;

9 printf("p1: %d at %p\n", *p1 , (void*)p1);

10 printf("p2: %d at %p\n", *p2 , (void*)p2);

11 printf("p3: %d at %p\n", *p3 , (void*)p3);

12 printf("Heap not contiguous\n");

13 free(p1); free(p2); free(p3);

14 return 0;

15 }

Output:
p1: 10 at 0x7f9a8c405820

p2: 20 at 0x7f9a8c405840

p3: 30 at 0x7f9a8c405860

Heap not contiguous

Heap allocations may be scattered

Prof. Jyotiprakash Mishra C Programming - Deck 19 16 / 27

Program 12: Stack Array vs Heap Array

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int stack_arr [5] = {1, 2, 3, 4, 5};

5 int *heap_arr;

6 int i;

7 heap_arr = (int*) malloc (5 * sizeof(int));

8 for (i = 0; i < 5; i++) {

9 heap_arr[i] = (i + 1) * 10;

10 }

11 printf("Stack array at: %p\n",

12 (void*) stack_arr);

13 printf("Heap array at: %p\n",

14 (void*) heap_arr);

15 printf("Stack: ");

16 for (i=0; i<5; i++) printf("%d ", stack_arr[i]);

17 printf("\nHeap: ");

18 for (i=0; i<5; i++) printf("%d ", heap_arr[i]);

19 printf("\n");

20 free(heap_arr);

21 return 0;

22 }

Output:
Stack array at: 0x7ffeeb3c4a00

Heap array at: 0x7f9a8c405820

Stack: 1 2 3 4 5

Heap: 10 20 30 40 50

Arrays can be on stack or heap

Prof. Jyotiprakash Mishra C Programming - Deck 19 17 / 27

Program 13: Structure on Stack vs Heap

1 #include <stdio.h>

2 #include <stdlib.h>

3 struct Point {

4 int x;

5 int y;

6 };

7 int main() {

8 struct Point stack_pt = {10, 20};

9 struct Point *heap_pt;

10 heap_pt = (struct Point*) malloc(

11 sizeof(struct Point));

12 heap_pt ->x = 30;

13 heap_pt ->y = 40;

14 printf("Stack: (%d,%d) at %p\n",

15 stack_pt.x, stack_pt.y, (void *)& stack_pt);

16 printf("Heap: (%d,%d) at %p\n",

17 heap_pt ->x, heap_pt ->y, (void*) heap_pt);

18 free(heap_pt);

19 return 0;

20 }

Output:
Stack: (10 ,20) at 0x7ffeeb3c4a10

Heap: (30 ,40) at 0x7f9a8c405820

Structures can be on stack or heap

Prof. Jyotiprakash Mishra C Programming - Deck 19 18 / 27

Program 14: Memory Address Comparison

1 #include <stdio.h>

2 #include <stdlib.h>

3 int global_var = 100;

4 int main() {

5 int stack_var = 10;

6 int *heap_var = (int*) malloc(sizeof(int));

7 static int static_var = 50;

8 *heap_var = 20;

9 printf("Global: %p\n", (void *)& global_var);

10 printf("Static: %p\n", (void *)& static_var);

11 printf("Stack: %p\n", (void *)& stack_var);

12 printf("Heap: %p\n", (void*) heap_var);

13 printf("\nDifferent memory regions\n");

14 free(heap_var);

15 return 0;

16 }

Output:
Global: 0x10a8e4020

Static: 0x10a8e4024

Stack: 0x7ffeeb3c4a1c

Heap: 0x7f9a8c405820

Different memory regions

Each segment has distinct address range

Prof. Jyotiprakash Mishra C Programming - Deck 19 19 / 27

Program 15: Function Parameter Passing

1 #include <stdio.h>

2 void func(int x, int *p) {

3 printf("In func:\n");

4 printf(" x (value): %d at %p\n",

5 x, (void *)&x);

6 printf("

p (pointer): %p\n", (void*)p);

7 printf(" *p (value): %d\n", *p);

8 }

9 int main() {

10 int a = 10;

11 int b = 20;

12 printf("In main:\n");

13 printf("

a: %d at %p\n", a, (void *)&a);

14 printf("

b: %d at %p\n", b, (void *)&b);

15 func(a, &b);

16 return 0;

17 }

Output:
In main:

a: 10 at 0x7ffeeb3c4a1c

b: 20 at 0x7ffeeb3c4a18

In func:

x (value): 10 at 0x7ffeeb3c49fc

p (pointer): 0x7ffeeb3c4a18

*p (value): 20

Parameters copied to function’s stack frame

Prof. Jyotiprakash Mishra C Programming - Deck 19 20 / 27

Program 16: Heap Fragmentation

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

4 int *p1, *p2 , *p3, *p4;

5 p1 = (int*) malloc(sizeof(int));

6 p2 = (int*) malloc(sizeof(int));

7 p3 = (int*) malloc(sizeof(int));

8 printf("Initial: %p %p %p\n",

9 (void*)p1, (void*)p2, (void*)p3);

10 free(p2);

11 printf("After freeing p2\n");

12 p4 = (int*) malloc(sizeof(int));

13 printf("New p4: %p\n", (void*)p4);

14 printf("p4 may reuse p2’s space\n");

15 free(p1); free(p3); free(p4);

16 return 0;

17 }

Output:
Initial: 0x7f9a8c405820

0x7f9a8c405840

0x7f9a8c405860

After freeing p2

New p4: 0x7f9a8c405840

p4 may reuse p2’s space

Heap memory can be fragmented and reused

Prof. Jyotiprakash Mishra C Programming - Deck 19 21 / 27

Program 17: Dangling Pointer After Function Return

1 #include <stdio.h>

2 int* getStackAddress () {

3 int local = 42;

4 return &local;

5 }

6 int* getHeapAddress () {

7 int *ptr = (int*) malloc(sizeof(int));

8 *ptr = 42;

9 return ptr;

10 }

11 int main() {

12 int *bad = getStackAddress ();

13 int *good = getHeapAddress ();

14 printf("Stack (BAD): %d (undefined)\n", *bad);

15 printf("Heap (GOOD): %d\n", *good);

16 free(good);

17 return 0;

18 }

Output:
Stack (BAD): 42 (undefined)

Heap (GOOD): 42

Heap persists, stack doesn’t

Prof. Jyotiprakash Mishra C Programming - Deck 19 22 / 27

Program 18: Stack Size Demonstration

1 #include <stdio.h>

2 void printStackUsage(int depth) {

3 int x;

4 static int *first = NULL;

5 if (first == NULL) {

6 first = &x;

7 }

8 if (depth % 1000 == 0) {

9 printf("Depth %d: %ld bytes from start\n",

10 depth , (char*)first - (char *)&x);

11 }

12 if (depth < 10000) {

13 printStackUsage(depth + 1);

14 }

15 }

16 int main() {

17 printf("Measuring stack growth\n");

18 printStackUsage (0);

19 return 0;

20 }

Output:
Measuring stack growth

Depth 0: 0 bytes from start

Depth 1000: 32000 bytes from start

Depth 2000: 64000 bytes from start

...

Depth 10000: 320000 bytes from start

Stack grows with recursion depth

Prof. Jyotiprakash Mishra C Programming - Deck 19 23 / 27

Program 19: Choosing Stack vs Heap

1 #include <stdio.h>

2 #include <stdlib.h>

3 void processSmallData () {

4 int data [10];

5 int i;

6 for (i = 0; i < 10; i++) data[i] = i;

7 printf("Small: Use stack\n");

8 }

9 void processLargeData () {

10 int *data = (int*) malloc (1000000* sizeof(int));

11 int i;

12 for (i = 0; i < 1000000; i++) data[i] = i;

13 printf("Large: Use heap\n");

14 free(data);

15 }

16 int main() {

17 processSmallData ();

18 processLargeData ();

19 printf("Choose based on size and lifetime\n");

20 return 0;

21 }

Output:
Small: Use stack

Large: Use heap

Choose based on size and lifetime

Stack for small/short, heap for large/long

Prof. Jyotiprakash Mishra C Programming - Deck 19 24 / 27

Program 20: Complete Stack vs Heap Example

1 #include <stdio.h>

2 #include <stdlib.h>

3 struct Data {

4 int value;

5 struct Data *next;

6 };

7 void stackList () {

8 struct Data n1 = {1, NULL};

9 struct Data n2 = {2, &n1};

10 struct Data n3 = {3, &n2};

11 printf("Stack list: destroyed on return\n");

12 }

13 struct Data* heapList () {

14 struct Data *n1, *n2 , *n3;

15 n1=(struct Data*) malloc(sizeof(struct Data));

16 n2=(struct Data*) malloc(sizeof(struct Data));

17 n3=(struct Data*) malloc(sizeof(struct Data));

18 n1 ->value =1; n1 ->next=NULL;

19 n2 ->value =2; n2 ->next=n1;

20 n3 ->value =3; n3 ->next=n2;

21 return n3;

22 }

23 int main() {

24 stackList ();

25 struct Data *list = heapList ();

26 printf("Heap list: persists , must free\n");

27 while(list){ struct Data *t=list;list=list ->next;free(t);}

28 return 0;

29 }

Output:
Stack list: destroyed on return

Heap list: persists , must free

Stack for temporary, heap for persistent data

Prof. Jyotiprakash Mishra C Programming - Deck 19 25 / 27

When to Use Stack vs Heap

Use Stack when:
Data size is small and known at compile time
Data lifetime matches function scope
Need fast allocation/deallocation
Don’t need to return data from function

Use Heap when:
Data size is large or unknown at compile time
Data must persist beyond function scope
Need to return data from function
Building dynamic data structures (linked lists, trees)
Size determined at runtime

Prof. Jyotiprakash Mishra C Programming - Deck 19 26 / 27

Key Takeaways

Stack: automatic, LIFO, fast, limited size

Heap: manual, flexible, slower, large size

Stack variables destroyed when function returns

Heap memory persists until explicitly freed

Never return address of local (stack) variable

Stack overflow from deep recursion or large locals

Heap exhaustion from too many allocations

Choose based on size, lifetime, and scope needs

Understanding this prevents common bugs

Critical for efficient memory management

Prof. Jyotiprakash Mishra C Programming - Deck 19 27 / 27

