C Programming - Deck 20

Recursion

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 20



What is Recursion?

A function that calls itself

Solves problem by breaking it into smaller subproblems

Must have two components:

e Base case: Condition to stop recursion
o Recursive case: Function calls itself with smaller input

Without base case: infinite recursion (stack overflow)
Each call creates new stack frame

Stack unwinds as calls return

Elegant solution for certain problems

Prof. Jyotiprakash Mishra C Programming - Deck 20 2/26



Recursion vs lteration

Aspect

Recursion

Iteration

Approach
Termination
Stack usage
Performance
Code
Memory
Best for
Risk

Function calls itself
Base case

High (each call)
Slower (overhead)
Often cleaner

More (stack frames)
Tree/graph problems
Stack overflow

Loop repeats
Loop condition
Low (single frame)
Faster

Can be complex
Less

Simple repetition
Infinite loop

yotiprakash Mishra




Program 1: Simple Countdown Recursion

1 #include <stdio.h> OUtPUt'
2 void countdown(int n) {
3 if (n == 0) { i
4 printf ("Done!\n"); 3
5 return;
2
6 1
7 printf ("%d\n", n); Donell
8 countdown(n - 1); =
9 ¥
10 int main() { Base case: n == 0, Recursive: countdown(n-1)
11 countdown (5) ;
12 return 0;
13}

yotiprakash Mishra C Programming - Deck 20



Program 2: Factorial Recursion

1 #include <stdio.h> OUtPUt'

i mtiff';‘;t::lgll(lmz ) ﬁ) c Factorial of 5 = 120
5! = B*4%3%2x1 = 120

4 return 1;

5 ¥

6 return n * factorial(n - 1); nl =n* (n-1)!

7}

8 int main() {

9 int n = 5;

10 printf ("Factorial of %d = %d\n",

11 n, factorial(n));

12 printf ("5! = 5x4x3%2%1 = %d\n",

13 factorial (5));

14 return 0;

15 %

yotiprakash Mishra i Deck 20



Program 3: Fibonacci Recursion

1 #include <stdio.h> OUtPUt'

2 int fib i(int

3 :mif EBOZZCZ;(;::‘:“::) é Fibonacci series (0-10):
2 if (n == 1) return 1; 011235 8 13 21 34 55
5 return fibonacci(n - 1) + fibonacci(n - 2);

6} fib(n) = fib(n-1) + fib(n-2)

7 int main() {

8 int i;

9 printf ("Fibonacci series (0-10):\n");
10 for (i = 0; i <= 10; i++) {

11 printf ("%d ", fibonacci(i));
12 ¥

13 printf ("\n");

14 return 0;

15 %

yotiprakash Mishra i Deck 20



Program 4: Sum of Natural Numbers

Output:

Sum of 1 to 10 = 55
Sum of 1 to 5 = 15

#include <stdio.h>
int sum(int n) {
if (n == 0) {
return O;

return n + sum(n - 1); sum(n) = n + sum(n-1)
¥
int main() {
9 int n = 10;
10 printf ("Sum of 1 to %d = %d\n", n, sum(n));
11 printf ("Sum of 1 to 5 = %d\n", sum(5));
12 return 0;

O~NOUAWN

Prof. Jyotiprakash Mishra C Programming - Deck 20



Program 5: Power Function Recursion

#include <stdio.h> Output:

1nF power (int base, int exp) { TEeEg
if (exp == 0) { )

return 1; 374 = 81

’ 573 125

return base * power(base, exp - 1);
¥
int main() {

9 printf ("2°5 = %d\n", power(2, 5));
10 printf("374 = %d\n", power(3, 4));
11 printf ("5°3 = %d\n", power(5, 3));
12 return 0;

O~NOUAWN

base®xp = base * base(exp —1)

Prof. Jyotiprakash Mishra C Programming - Deck 20




Program 6: GCD Using Euclidean Algorithm

Output:

GCD (48, 18) = 6
GCD (100, 25) = 25
GCD (35, 14) =7

#include <stdio.h>
int gecd(int a, int b) {
if (b == 0) {
return aj

return gcd(b, a % b);
¥ ged(a,b) = ged(b, a mod b)
int main() {

9 printf ("GCD (48, 18) =
10 printf ("GCD (100, 25)
11 printf ("GCD (35, 14) =
12 return 0;

O~NOUAWN

f/d\n", gcd (48, 18));
%d\n", gcd (100, 25));
fd\n", gcd(35, 14));

yotiprakash Mishra C Programming - Deck 20



Program 7: Print Array Using Recursion

1 #include <stdio.h> OUtPUt'

:2)) vo;;i E;lzZAz;“a%(:mt arr[], int n) { Array: 10 20 30 40 50
4 return;

5 } Recursively traverse array

6 printArray(arr, n - 1);

7 printf("%d ", arr[n - 1]);

8 }

9 int main() {

10 int arr[] = {10, 20, 30, 40, 50};
11 printf ("Array: ");

12 printArray (arr, 5);

13 printf ("\n");

14 return 0;

Prof. Jyotiprakash Mishra C Programming - Deck 20



Program 8: Sum of Array Elements

1 #include <stdio.h> OUtPUt'
5 X .
int arraySum(int arr([], int n) { SRS
3 if (n == 0) { S - 15
4 return O; um =
5
6 return arr[n - 1] + arraySum(arr, n - 1); sum(arr,n) = arr[n-1] + sum(arr,n-1)
7%}
8 int main() {

9 int arr[] = {5, 10, 15, 20, 25};

10 printf ("Sum = %d\n", arraySum(arr, 5));
11 int arr2[] = {1, 2, 3, 4, 5};

12 printf ("Sum = %d\n", arraySum(arr2, 5));
13 return O0;

yotiprakash Mishra i Deck 20



Program 9: Find Maximum in Array

1 #include <stdio.h> OUtPUt'

2 int findMax(int arr[], int n) { .

3 if (no==1) { Maximum = 67
4 return arr[0];

5 } Compare current with max of rest
6 int max = findMax(arr, n - 1);

7 if (arr[n - 1] > max) {

8 return arr[n - 1];

9

10 return max;

11 %}

12 int main() {

13 int arr[] = {12, 45, 23, 67, 34};

14 printf ("Maximum = %d\n", findMax(arr, 5));
15 return O;

16 ¥

yotiprakash Mishra i Deck 20



Program 10: Reverse Array Using Recursion

1 #include <stdio.h> OUtPUt'

2 void reverse(int arr[], int start, int end) {

3 if (start >= end) { hoyersod MONINSR2RT
4 return;

5 Swap ends and recurse inward
6 int temp = arr([start];

7 arr [start] = arr[end];

8 arr [end] = temp;

9 reverse (arr, start + 1, end - 1);

10 %

11 int main() {

12 int arr([] = {1, 2, 3, 4, 5};
13 int ij;

14 reverse (arr, 0, 4);

15 printf ("Reversed: ");

16 for (i = 0; i < 5; i++) {

17 printf ("%d ", arr[il);
18

19 printf ("\n");

20 return 0;

21 %}

yotiprakash Mishra i Deck 20



Program 11: Binary Search Recursion

Output:

1 #include <stdio.h>

2 int binarySearch(int arr[] int 1, int r, int ¥) < )

3 it G >yr) return -1; ’ ’ ’ Found at index 2
4 int mid = 1 + (r - 1) / 2;

5 if (arr[mid] == x) return mid; Divide and conquer search
6 if (arr[mid] > x)

7 return binarySearch(arr, 1, mid - 1, x);

8 return binarySearch(arr, mid + 1, r, x);

9 }

10 int main() {
11 int arr[]l = {10, 20, 30, 40, 50};

12 int result = binarySearch(arr, 0, 4, 30);
13 if (result != -1)

14 printf ("Found at index %d\n", result);
15 else

16 printf ("Not found\n");

17 return O0;

18 }

otiprakash Mishra



Program 12: String Le

1 #include <stdio.h> OUtPUt'

2 int strlngLfr_lgt)h(?har *str) { Length of ’Hello’ = 5
3 i (xstr == 2\07) { Length of ’Recursion’ = 9
4 return O; &

5 }

6 return 1 + stringlength(str + 1); Count chars until null terminator
7}

8 int main() {

9 char stri[] = "Hello";

10 char str2[] = "Recursion';

11 printf ("Length of ’%s’ = %d\n",

12 strl, stringlength(stri));

13 printf ("Length of ’%s’ = %d\n",

14 str2, stringlength(str2));

15 return O;

16 ¥

yotiprakash Mishra i Deck 20



Program 13: String Reversal Recursion

Output:

1 #include <stdio.h>
§ vo%d reverseSErlng(char *str, int start, int erﬁl;\iginalz Hello
if (start >= end) {
Reversed: olleH
4 return;
5 s
6 char temp = str[start]; Swap from both ends
7 str[start] = strlendl;
8 str[end] = temp;
9 reverseString (str, start + 1, end - 1);
10 ¥
11 int main() {
12 char str[] = "Hello";
13 printf ("Original: %s\n", str);
14 reverseString (str, 0, 4);
15 printf ("Reversed: %s\n", str);
16 return O0;
17 ¥

yotiprakash Mishra i Deck 20



Program 14: Check Palindrome Recursion

Output:

1 #include <stdio.h>

2 int isPalindrome(char *str, int start, int end} { T .

3 if (start >= end) { ’madam :'I.S pallndr&?me

4 return 1: hello’ is not palindrome
;

5

6 if (strlstart] != strlend]) { Compare from both ends

7 return 0;

8 s

9 return isPalindrome(str, start + 1, end - 1);

10 ¥

11 int main() {

12 char stri[] = "madam";

13 char str2[] = "hello";

14 printf ("’%s’ is %spalindrome\n", stril,

15 isPalindrome (strl, 0, 4) 7 "" : "not ");

16 printf ("’%s’ is %spalindrome\n", str2,

17 isPalindrome (str2, 0, 4) ? "" : "not ");

18 return O0;

19 }

otiprakash Mishra



Program 15: Tower of Hanoi

Output:

1 #include <stdio.h>
5 . s
void hanoi(int n, char from, char to, Tower of Hamoi (3 disks):

3 char aux) { X

: Move disk 1 from A to C
4 i @==1{ Move disk 2 from A to B
5 printf ("Move disk 1 from %c to %c\n", X
6 from, to); Move disk 1 from C to B
7 return. ’ Move disk 3 from A to C
8 3 ’ Move disk 1 from B to A

X Move disk 2 from B to C

9 hanoi(n - 1, from, aux, to); - qagk 4 & A oo @
10 printf ("Move disk %d from %c to %c\n", ove dis rom °
11 n, from, to);
12 hanoi(n - 1, aux, to, from); Classic recursive problem

13 %}

14 int main() {

15 int n = 3;

16 printf ("Tower of Hanoi (%d disks):\n", n);

17 hanoi(n, ’A’, ’C’, ’B’);
18 return O0;
19 ¥

otiprakash Mishra

18/26




Program 16: Count Digits Recursion

Output:

1 #include <stdio.h>
§ int countz]zlglts(lnt n) { Digits in 12345: 5
if (n == 0) o R

2 return 0: Digits in 999: 3
’ Digits in 7: 1

5 }

6 return 1 + countDigits(n / 10);

7} Divide by 10 recursively

8 int main() {

9 printf ("Digits in 12345: %d\n",

10 countDigits (12345));

11 printf ("Digits in 999: %d\n",

12 countDigits (999));

13 printf ("Digits in 7: %d\n",

14 countDigits (7)) ;

15 return O;

16 ¥

yotiprakash Mishra i Deck 20



Program 17: Sum of Digits Recursion

Output:

1 #include <stdio.h>

§ 1n§fs1(1:Di§113§(1nt o) o Sum of digits in 123: 6
2 return 0; Sum of digits in 999: 27
5 } Sum of digits in 4567: 22
6 return (n % 10) + sumDigits(n / 10);

7} Add last digit + sum of rest

8 int main() {

9 printf ("Sum of digits in 123: %d\n",

10 sumDigits (123));

11 printf ("Sum of digits in 999: %d\n",

12 sumDigits (999));

13 printf ("Sum of digits in 4567: %d\n",

14 sumDigits (4567));

15 return O;

16 ¥

yotiprakash Mishra i Deck 20



Program 18: Decimal to Binary Recursion

O~NOU A WN

#include <stdio.h>

void decimalToBinary(int n) {
if (n == 0) {

return;

}
decimalToBinary(n / 2);
printf ("%d", n % 2);

¥

int main() {
printf ("Binary of 10: ");
decimalToBinary (10);
printf ("\nBinary of 25: ");
decimalToBinary (25);
printf ("\nBinary of 7: ");
decimalToBinary (7);
printf ("\n");
return O;

yotiprakash Mishra

Output:

Binary of 10: 1010
Binary of 25: 11001
Binary of 7: 111

Print bits in reverse order

Deck 20



Program 19: Print Nto1land 1 to N

1 #include <stdio.h> OUtPUt'
5 . X . .

vo}d prlx_lEDescendlng(lnt n) { Descending: 5 4 3 2 1
3 if (n == 0) return; n ding: 1 2 3 4 5
4 printf("%d ", n); scending:
5 printDescending(n - 1);
6} Print before vs after recursive call
7 void printAscending(int n) {
8 if (n == 0) return;

9 printAscending(n - 1);
10 printf("%d ", n);

11 %}

12 int main() {

13 printf ("Descending: ");
14 printDescending (5);

15 printf ("\nAscending: ");
16 printAscending(5);

17 printf ("\n");

18 return 0;

yotiprakash Mishra i Deck 20



Program 20: Recursion vs Iteration Comparison

Output:

1 #include <stdio.h>
5 i X . .

int factorialRecursive (int n) { Recursive: 5! = 120
3 if (n <= 1) return 1; R

. . Iterative: 5! = 120

4 return n * factorialRecursive(n - 1); X
5 Both give same result
6 int factoriallterative(int n) {
7 int result = 1; Same result, different approaches
8 int ij;
9 for (i = 2; i <= n; i++) {
10 result *= ij;
11 }
12 return result;
13}

14 int main() {
15 int n = 5;

16 printf ("Recursive: %d! = %d\a",
17 n, factorialRecursive(n));

18 printf ("Iterative: %d! = %d\n",
19 n, factoriallterative(n));

20 printf ("Both give same result\n");
21 return 0;

22}

otiprakash Mishra



Advantages of Recursion

Clean and elegant code for certain problems
Natural for tree and graph traversal
Simplifies divide-and-conquer algorithms
Easier to understand for some problems
Reduces complex problems to simpler ones

Perfect for problems with recursive structure

Examples: Tree traversal, backtracking, Tower of Hanoi

Prof. Jyotiprakash Mishra C Programming - Deck 20



Disadvantages of Recursion

Higher memory usage (stack frames)

Slower than iteration (function call overhead)
Risk of stack overflow with deep recursion
Can be harder to debug

May recalculate same values (like Fibonacci)

Not always the most efficient solution

Stack size is limited by system

Prof. Jyotiprakash Mishra C Programming - Deck 20



Key Takeaways

Recursion: function calls itself

Must have base case (termination condition)
Recursive case reduces problem size

Each call creates new stack frame

Stack unwinds as functions return

Without base case: infinite recursion

Good for: trees, divide-and-conquer, backtracking
Trade-off: elegance vs performance

Always consider iterative alternative

Understanding recursion is fundamental to CS

Prof. Jyotiprakash Mishra C Programming - Deck 20 26 /26



