
C Programming - Deck 20
Recursion

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 20 1 / 26

What is Recursion?

A function that calls itself

Solves problem by breaking it into smaller subproblems

Must have two components:

Base case: Condition to stop recursion
Recursive case: Function calls itself with smaller input

Without base case: infinite recursion (stack overflow)

Each call creates new stack frame

Stack unwinds as calls return

Elegant solution for certain problems

Prof. Jyotiprakash Mishra C Programming - Deck 20 2 / 26

Recursion vs Iteration

Aspect Recursion Iteration
Approach Function calls itself Loop repeats
Termination Base case Loop condition
Stack usage High (each call) Low (single frame)
Performance Slower (overhead) Faster
Code Often cleaner Can be complex
Memory More (stack frames) Less
Best for Tree/graph problems Simple repetition
Risk Stack overflow Infinite loop

Prof. Jyotiprakash Mishra C Programming - Deck 20 3 / 26

Program 1: Simple Countdown Recursion

1 #include <stdio.h>

2 void countdown(int n) {

3 if (n == 0) {

4 printf("Done!\n");

5 return;

6 }

7 printf("%d\n", n);

8 countdown(n - 1);

9 }

10 int main() {

11 countdown (5);

12 return 0;

13 }

Output:
5

4

3

2

1

Done!

Base case: n == 0, Recursive: countdown(n-1)

Prof. Jyotiprakash Mishra C Programming - Deck 20 4 / 26

Program 2: Factorial Recursion

1 #include <stdio.h>

2 int factorial(int n) {

3 if (n == 0 || n == 1) {

4 return 1;

5 }

6 return n * factorial(n - 1);

7 }

8 int main() {

9 int n = 5;

10 printf("Factorial of %d = %d\n",

11 n, factorial(n));

12 printf("5! = 5*4*3*2*1 = %d\n",

13 factorial (5));

14 return 0;

15 }

Output:
Factorial of 5 = 120

5! = 5*4*3*2*1 = 120

n! = n * (n-1)!

Prof. Jyotiprakash Mishra C Programming - Deck 20 5 / 26

Program 3: Fibonacci Recursion

1 #include <stdio.h>

2 int fibonacci(int n) {

3 if (n == 0) return 0;

4 if (n == 1) return 1;

5 return fibonacci(n - 1) + fibonacci(n - 2);

6 }

7 int main() {

8 int i;

9 printf("Fibonacci series (0 -10):\n");

10 for (i = 0; i <= 10; i++) {

11 printf("%d ", fibonacci(i));

12 }

13 printf("\n");

14 return 0;

15 }

Output:
Fibonacci series (0 -10):

0 1 1 2 3 5 8 13 21 34 55

fib(n) = fib(n-1) + fib(n-2)

Prof. Jyotiprakash Mishra C Programming - Deck 20 6 / 26

Program 4: Sum of Natural Numbers

1 #include <stdio.h>

2 int sum(int n) {

3 if (n == 0) {

4 return 0;

5 }

6 return n + sum(n - 1);

7 }

8 int main() {

9 int n = 10;

10 printf("Sum of 1 to %d = %d\n", n, sum(n));

11 printf("Sum of 1 to 5 = %d\n", sum (5));

12 return 0;

13 }

Output:
Sum of 1 to 10 = 55

Sum of 1 to 5 = 15

sum(n) = n + sum(n-1)

Prof. Jyotiprakash Mishra C Programming - Deck 20 7 / 26

Program 5: Power Function Recursion

1 #include <stdio.h>

2 int power(int base , int exp) {

3 if (exp == 0) {

4 return 1;

5 }

6 return base * power(base , exp - 1);

7 }

8 int main() {

9 printf("2^5 = %d\n", power(2, 5));

10 printf("3^4 = %d\n", power(3, 4));

11 printf("5^3 = %d\n", power(5, 3));

12 return 0;

13 }

Output:
2^5 = 32

3^4 = 81

5^3 = 125

baseexp = base ∗ base(exp − 1)

Prof. Jyotiprakash Mishra C Programming - Deck 20 8 / 26

Program 6: GCD Using Euclidean Algorithm

1 #include <stdio.h>

2 int gcd(int a, int b) {

3 if (b == 0) {

4 return a;

5 }

6 return gcd(b, a % b);

7 }

8 int main() {

9 printf("GCD(48, 18) = %d\n", gcd(48, 18));

10 printf("GCD(100, 25) = %d\n", gcd(100, 25));

11 printf("GCD(35, 14) = %d\n", gcd(35, 14));

12 return 0;

13 }

Output:
GCD(48, 18) = 6

GCD(100, 25) = 25

GCD(35, 14) = 7

gcd(a,b) = gcd(b, a mod b)

Prof. Jyotiprakash Mishra C Programming - Deck 20 9 / 26

Program 7: Print Array Using Recursion

1 #include <stdio.h>

2 void printArray(int arr[], int n) {

3 if (n == 0) {

4 return;

5 }

6 printArray(arr , n - 1);

7 printf("%d ", arr[n - 1]);

8 }

9 int main() {

10 int arr[] = {10, 20, 30, 40, 50};

11 printf("Array: ");

12 printArray(arr , 5);

13 printf("\n");

14 return 0;

15 }

Output:
Array: 10 20 30 40 50

Recursively traverse array

Prof. Jyotiprakash Mishra C Programming - Deck 20 10 / 26

Program 8: Sum of Array Elements

1 #include <stdio.h>

2 int arraySum(int arr[], int n) {

3 if (n == 0) {

4 return 0;

5 }

6 return arr[n - 1] + arraySum(arr , n - 1);

7 }

8 int main() {

9 int arr[] = {5, 10, 15, 20, 25};

10 printf("Sum = %d\n", arraySum(arr , 5));

11 int arr2[] = {1, 2, 3, 4, 5};

12 printf("Sum = %d\n", arraySum(arr2 , 5));

13 return 0;

14 }

Output:
Sum = 75

Sum = 15

sum(arr,n) = arr[n-1] + sum(arr,n-1)

Prof. Jyotiprakash Mishra C Programming - Deck 20 11 / 26

Program 9: Find Maximum in Array

1 #include <stdio.h>

2 int findMax(int arr[], int n) {

3 if (n == 1) {

4 return arr [0];

5 }

6 int max = findMax(arr , n - 1);

7 if (arr[n - 1] > max) {

8 return arr[n - 1];

9 }

10 return max;

11 }

12 int main() {

13 int arr[] = {12, 45, 23, 67, 34};

14 printf("Maximum = %d\n", findMax(arr , 5));

15 return 0;

16 }

Output:
Maximum = 67

Compare current with max of rest

Prof. Jyotiprakash Mishra C Programming - Deck 20 12 / 26

Program 10: Reverse Array Using Recursion

1 #include <stdio.h>

2 void reverse(int arr[], int start , int end) {

3 if (start >= end) {

4 return;

5 }

6 int temp = arr[start];

7 arr[start] = arr[end];

8 arr[end] = temp;

9 reverse(arr , start + 1, end - 1);

10 }

11 int main() {

12 int arr[] = {1, 2, 3, 4, 5};

13 int i;

14 reverse(arr , 0, 4);

15 printf("Reversed: ");

16 for (i = 0; i < 5; i++) {

17 printf("%d ", arr[i]);

18 }

19 printf("\n");

20 return 0;

21 }

Output:
Reversed: 5 4 3 2 1

Swap ends and recurse inward

Prof. Jyotiprakash Mishra C Programming - Deck 20 13 / 26

Program 11: Binary Search Recursion

1 #include <stdio.h>

2 int binarySearch(int arr[], int l, int r, int x) {

3 if (l > r) return -1;

4 int mid = l + (r - l) / 2;

5 if (arr[mid] == x) return mid;

6 if (arr[mid] > x)

7 return binarySearch(arr , l, mid - 1, x);

8 return binarySearch(arr , mid + 1, r, x);

9 }

10 int main() {

11 int arr[] = {10, 20, 30, 40, 50};

12 int result = binarySearch(arr , 0, 4, 30);

13 if (result != -1)

14 printf("Found at index %d\n", result);

15 else

16 printf("Not found\n");

17 return 0;

18 }

Output:
Found at index 2

Divide and conquer search

Prof. Jyotiprakash Mishra C Programming - Deck 20 14 / 26

Program 12: String Length Recursion

1 #include <stdio.h>

2 int stringLength(char *str) {

3 if (*str == ’\0’) {

4 return 0;

5 }

6 return 1 + stringLength(str + 1);

7 }

8 int main() {

9 char str1[] = "Hello";

10 char str2[] = "Recursion";

11 printf("Length of ’%s’ = %d\n",

12 str1 , stringLength(str1));

13 printf("Length of ’%s’ = %d\n",

14 str2 , stringLength(str2));

15 return 0;

16 }

Output:
Length of ’Hello ’ = 5

Length of ’Recursion ’ = 9

Count chars until null terminator

Prof. Jyotiprakash Mishra C Programming - Deck 20 15 / 26

Program 13: String Reversal Recursion

1 #include <stdio.h>

2 void reverseString(char *str , int start , int end) {

3 if (start >= end) {

4 return;

5 }

6 char temp = str[start];

7 str[start] = str[end];

8 str[end] = temp;

9 reverseString(str , start + 1, end - 1);

10 }

11 int main() {

12 char str[] = "Hello";

13 printf("Original: %s\n", str);

14 reverseString(str , 0, 4);

15 printf("Reversed: %s\n", str);

16 return 0;

17 }

Output:
Original: Hello

Reversed: olleH

Swap from both ends

Prof. Jyotiprakash Mishra C Programming - Deck 20 16 / 26

Program 14: Check Palindrome Recursion

1 #include <stdio.h>

2 int isPalindrome(char *str , int start , int end) {

3 if (start >= end) {

4 return 1;

5 }

6 if (str[start] != str[end]) {

7 return 0;

8 }

9 return isPalindrome(str , start + 1, end - 1);

10 }

11 int main() {

12 char str1[] = "madam";

13 char str2[] = "hello";

14 printf("’%s’ is %spalindrome\n", str1 ,

15 isPalindrome(str1 , 0, 4) ? "" : "not ");

16 printf("’%s’ is %spalindrome\n", str2 ,

17 isPalindrome(str2 , 0, 4) ? "" : "not ");

18 return 0;

19 }

Output:
’madam ’ is palindrome

’hello ’ is not palindrome

Compare from both ends

Prof. Jyotiprakash Mishra C Programming - Deck 20 17 / 26

Program 15: Tower of Hanoi

1 #include <stdio.h>

2 void hanoi(int n, char from , char to,

3 char aux) {

4 if (n == 1) {

5 printf("Move disk 1 from %c to %c\n",

6 from , to);

7 return;

8 }

9 hanoi(n - 1, from , aux , to);

10 printf("Move disk %d from %c to %c\n",

11 n, from , to);

12 hanoi(n - 1, aux , to , from);

13 }

14 int main() {

15 int n = 3;

16 printf("Tower of Hanoi (%d disks):\n", n);

17 hanoi(n, ’A’, ’C’, ’B’);

18 return 0;

19 }

Output:
Tower of Hanoi (3 disks):

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

Classic recursive problem

Prof. Jyotiprakash Mishra C Programming - Deck 20 18 / 26

Program 16: Count Digits Recursion

1 #include <stdio.h>

2 int countDigits(int n) {

3 if (n == 0) {

4 return 0;

5 }

6 return 1 + countDigits(n / 10);

7 }

8 int main() {

9 printf("Digits in 12345: %d\n",

10 countDigits (12345));

11 printf("Digits in 999: %d\n",

12 countDigits (999));

13 printf("Digits in 7: %d\n",

14 countDigits (7));

15 return 0;

16 }

Output:
Digits in 12345: 5

Digits in 999: 3

Digits in 7: 1

Divide by 10 recursively

Prof. Jyotiprakash Mishra C Programming - Deck 20 19 / 26

Program 17: Sum of Digits Recursion

1 #include <stdio.h>

2 int sumDigits(int n) {

3 if (n == 0) {

4 return 0;

5 }

6 return (n % 10) + sumDigits(n / 10);

7 }

8 int main() {

9 printf("Sum of digits in 123: %d\n",

10 sumDigits (123));

11 printf("Sum of digits in 999: %d\n",

12 sumDigits (999));

13 printf("Sum of digits in 4567: %d\n",

14 sumDigits (4567));

15 return 0;

16 }

Output:
Sum of digits in 123: 6

Sum of digits in 999: 27

Sum of digits in 4567: 22

Add last digit + sum of rest

Prof. Jyotiprakash Mishra C Programming - Deck 20 20 / 26

Program 18: Decimal to Binary Recursion

1 #include <stdio.h>

2 void decimalToBinary(int n) {

3 if (n == 0) {

4 return;

5 }

6 decimalToBinary(n / 2);

7 printf("%d", n % 2);

8 }

9 int main() {

10 printf("Binary of 10: ");

11 decimalToBinary (10);

12 printf("\nBinary of 25: ");

13 decimalToBinary (25);

14 printf("\nBinary of 7: ");

15 decimalToBinary (7);

16 printf("\n");

17 return 0;

18 }

Output:
Binary of 10: 1010

Binary of 25: 11001

Binary of 7: 111

Print bits in reverse order

Prof. Jyotiprakash Mishra C Programming - Deck 20 21 / 26

Program 19: Print N to 1 and 1 to N

1 #include <stdio.h>

2 void printDescending(int n) {

3 if (n == 0) return;

4 printf("%d ", n);

5 printDescending(n - 1);

6 }

7 void printAscending(int n) {

8 if (n == 0) return;

9 printAscending(n - 1);

10 printf("%d ", n);

11 }

12 int main() {

13 printf("Descending: ");

14 printDescending (5);

15 printf("\nAscending: ");

16 printAscending (5);

17 printf("\n");

18 return 0;

19 }

Output:
Descending: 5 4 3 2 1

Ascending: 1 2 3 4 5

Print before vs after recursive call

Prof. Jyotiprakash Mishra C Programming - Deck 20 22 / 26

Program 20: Recursion vs Iteration Comparison

1 #include <stdio.h>

2 int factorialRecursive(int n) {

3 if (n <= 1) return 1;

4 return n * factorialRecursive(n - 1);

5 }

6 int factorialIterative(int n) {

7 int result = 1;

8 int i;

9 for (i = 2; i <= n; i++) {

10 result *= i;

11 }

12 return result;

13 }

14 int main() {

15 int n = 5;

16 printf("Recursive: %d! = %d\n",

17 n, factorialRecursive(n));

18 printf("Iterative: %d! = %d\n",

19 n, factorialIterative(n));

20 printf("Both give same result\n");

21 return 0;

22 }

Output:
Recursive: 5! = 120

Iterative: 5! = 120

Both give same result

Same result, different approaches

Prof. Jyotiprakash Mishra C Programming - Deck 20 23 / 26

Advantages of Recursion

Clean and elegant code for certain problems

Natural for tree and graph traversal

Simplifies divide-and-conquer algorithms

Easier to understand for some problems

Reduces complex problems to simpler ones

Perfect for problems with recursive structure

Examples: Tree traversal, backtracking, Tower of Hanoi

Prof. Jyotiprakash Mishra C Programming - Deck 20 24 / 26

Disadvantages of Recursion

Higher memory usage (stack frames)

Slower than iteration (function call overhead)

Risk of stack overflow with deep recursion

Can be harder to debug

May recalculate same values (like Fibonacci)

Not always the most efficient solution

Stack size is limited by system

Prof. Jyotiprakash Mishra C Programming - Deck 20 25 / 26

Key Takeaways

Recursion: function calls itself

Must have base case (termination condition)

Recursive case reduces problem size

Each call creates new stack frame

Stack unwinds as functions return

Without base case: infinite recursion

Good for: trees, divide-and-conquer, backtracking

Trade-off: elegance vs performance

Always consider iterative alternative

Understanding recursion is fundamental to CS

Prof. Jyotiprakash Mishra C Programming - Deck 20 26 / 26

