C Programming - Deck 21

Enumerations and Unions

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 21

User-defined data type for named integer constants
Makes code more readable and maintainable
Syntax: enum name {valuel, value2, ...};
Default values start at 0 and increment by 1

Can assign custom values

Internally stored as integers

Used for states, days, months, status codes, etc.

Better than using magic numbers

Prof. Jyotiprakash Mishra C Programming - Deck 21

Program 1: Basic Enum Declaration

1 #include <stdio.h> OUtPUt-
2 D
2 enum Day { Today is day: 3
SUNDAY ,
4 MONDAY et
s MONDAY = 1
5 TUESDAY, SATURDAY = 6
6 WEDNESDAY , -
7 THURSDAY ,
8 FRIDAY, Default values: 0, 1, 2, 3, ...
9 SATURDAY
10 3}

11 int main() {

12 enum Day today = WEDNESDAY;

13 printf ("Today is day: %d\n", today);
14 printf ("SUNDAY = %d\n", SUNDAY);

15 printf ("MONDAY = 7%d\n", MONDAY);

16 printf ("SATURDAY = %d\n", SATURDAY);
17 return O0;

yotiprakash Mishra i Deck 21

Program 2: Enum with Cu

1 #include <stdio.h> OUtPUt'

2 enum ErrorCode {

3 SUCCESS = o0, z;zz;:s fog

4 FILE_NOT_FOUND = 404, SERVER_ERROR = 500
5 SERVER_ERROR = 500, _

6 TIMEOUT = 408 EMEDDTECRS05
70}

8 int main() { Can assign any integer values
9 enum ErrorCode status = FILE_NOT_FOUND;

10 printf ("Status: %d\n", status);

11 printf ("SUCCESS = %d\n", SUCCESS);

12 printf ("SERVER_ERROR = %d\n", SERVER_ERROR);

13 printf ("TIMEOUT = %d\n",
14 return 0;
15 ¥

otiprakash Mishra

TIMEQUT) ;

Program 3: Enum with Partial Custom Values

1 #include <stdio.h> Output:
2 enum Month { R
3 JAN = 1,

4 FEB, FEB -

5 MAR, DEC = 12
6 APR,

! MAY, After custom value, auto-increment continues
8 JUN,

9 JUL,

10 AUG,

11 SEP,

12 0ocCT,

13 NOV,

14 DEC

15 3},

16 int main() {

17 printf ("JAN = %d\n", JAN);
18 printf ("FEB = %d\n", FEB);
19 printf ("DEC = %d\n", DEC);
20 return O;

yotiprakash Mishra C Programming - Deck 21

Program 4: Switch Case with Enum

1 #include <stdio.h> OUtPUt'
2 enum Color { RED, GREEN, BLUE, YELLOW };
; : Green color
3 int main() {
4 enum Color ¢ = GREEN;
5 switch(c) { Enums make switch statements readable
6 case RED:
7 printf ("Red color\n");
8 break;
9 case GREEN:
10 printf ("Green color\n");
11 break;
12 case BLUE:
13 printf ("Blue color\n");
14 break;
15 case YELLOW:
16 printf ("Yellow color\n");
17 break;
18 }
19 return 0;
20 3}

otiprakash Mishra

Program 5: Enum for State Machine

1 #include <stdio.h> Output:

2 enum State { IDLE, RUNNING, PAUSED, STOPPED };
3 int main() {

4 enum State current = IDLE;

5 printf ("Initial state: %d\n", current);

6 current = RUNNING;
7
8

Initial state: O
Changed to: 1
Changed to: 2
Final state: 3

printf ("Changed to: %d\n", current);

current = PAUSED; Enums perfect for state management
9 printf ("Changed to: %d\n", current);
10 current = STOPPED;

11 printf ("Final state: %d\n", current);
12 return 0;
13 3

otiprakash Mishra

Unions

User-defined data type like structure

All members share the same memory location

Only one member can hold value at a time

Size equals size of largest member

Syntax: union name {typel ml; type2 m2; ...};
Memory efficient when only one member used at a time

Useful for type punning and variant types

Writing to one member overwrites others

Prof. Jyotiprakash Mishra C Programming - Deck 21

Program 6: Basic Union Declaration

int main() {
union Data d;

9 d.i = 10; Only one member valid at a time

10 printf("d.i = %d\n", d.i);

11 d.f = 3.14;

12 printf("d.f = %.2f\n", d.£f);

13 printf ("d.i now = %d (garbage)\n", d.i);

14 d.c = "A’;

15 printf("d.c = %c\n", d.c);

16 printf ("d.f now = %.2f (garbage)\n", d.f);

17 return O0;

1 #include <stdio.h>
;i paca ¢ 6110
4 float £; gotisisais
> d.i now = 1078523331 (garbage)
5 char c;
6 3, d.c = A
- > d.f now = 0.00 (garbage)
8

yotiprakash Mishra i Deck 21

Program 7: Union vs Stru

Output:

1 #include <stdio.h>
2 struct StructData
3 int i: t Struct size: 12 bytes

’ Union size: 4 bytes
4 float f; N

int: 4, float: 4, char: 1

5 char c;
6 3}
7 union UnionData { Union takes size of largest member
8 int i;

9 float f;

10 char c;

113}

12 int main() {

13 printf ("Struct size: %lu bytes\n",

14 sizeof (struct StructData));

15 printf ("Union size: %lu bytes\n",

16 sizeof (union UnionData));

17 printf ("int: %lu, float: %lu, char: %lu\n",
18 sizeof (int), sizeof (float), sizeof (char));
19 return 0;

20 ¥

otiprakash Mishra

Program 8: Union

1
2
3
4
5
6
7
8

};

i;t main () {

#include <stdio.h>
union Data {

int 1i;
float f;
char c¢;

union Data d;

Output:

Address of union: O0x7ffeeb3c4all
Address of d.i: 0x7ffeeb3c4all
Address of d.f: 0x7ffeeb3c4all
Address of d.c: 0x7ffeeb3c4all
All members share same address

printf ("Address of union: %p\n", (void#*)&dW;members at same memory location

printf ("Address of d. %p\n",
printf ("Address of d.f: %p\n",
printf ("Address of d.c: %p\n",
printf ("All members share same
return O;

otiprakash Mishra

(void*)&d.i);
(void*)&d.f);
(void#*)&d.c);
address\n");

Program 9: Union

#include <stdio.h>
union Convert {
int i;
char bytes[4];
};
int main() {
union Convert c;
c.i = 0x12345678;
9 printf ("Integer:
10 printf ("Bytes: ");
11 int i;

ONDUI A WN -

0x%X\n",

or Type Conversion

Output:

Integer: 0x12345678
Bytes: 0x78 0x56 0x34 0x12

Little-endian byte order visible

c.i);

(unsigned char)c.bytes[i]);

12 for (i = 0; i < 4; i++) {
13 printf ("0x%02X ",

14 ¥

15 printf ("\n");

16 return O0;

17 ¥

yotiprakash Mishra

Deck 21

: Tagged Union

(Discriminated Union)

1 #include <stdio.h> OUtPUt'

2 enum Type { INT, FLOAT, CHAR };

3 struct Tagged { LiERAZ
t2: 3.14

4 enum Type type;

5 union {

6 int i; Tag indicates which member is valid

7 float f;

8 char c;

9 } data;

10 3};

11 int main() {

12 struct Tagged t1 = {INT, {.i = 42}};

13 struct Tagged t2 = {FLOAT, {.f = 3.14}};

14 if (t1.type == INT)

15 printf ("t1: %d\n", til.data.i);

16 if (t2.type == FLOAT)

17 printf ("t2: %.2f\n", t2.data.f);

18 return 0;

19 }

Prof. Jyotiprakash Mishra

C Programming - Deck 21

Program 11: Union in Array

1
2
3
4
5
6
7
8

Output:

arr [0].1i = 10
arr[1].f = 3.14
arr[2].i = 20

Array size: 12 bytes

#include <stdio.h>
union Number {
int i;
float f;
}s;
int main() {
union Number arr[3];
arr [0].i = 10; Array of unions: 3 * 4 bytes = 12
9 arr[1].f = 3.14;
10 arr [2].1i = 20;
11 printf ("arr[0].i = %d\n", arr([0].i);
12 printf ("arr[1].£f = %.2f\n", arr([1].f);
13 printf ("arr[2].i = %d\n", arr([2].i);
14 printf ("Array size: %lu bytes\n", sizeof (arr));
15 return O;

yotiprakash Mishra i Deck 21

Program 12: Enum for Menu System

1 #include <stdio.h> OUtPUt'
2 enum Menu { ADD=1, SUB, MUL, DIV, EXIT };
N . 1. Add

3 int main() {

X . 2. Subtract
4 int choice; 3. Multipl
5 printf("1. Add\n2. Subtract\n3. Multiply\n")4' D‘.l .;p Y
6 printf("4. Divide\n5. Exit\nChoice: "); ©oove N

. : 5. Exit
7 scanf ("%d", &choice); .
; . Choice: 3

8 switch(choice) { Multiplicati
9 case ADD: printf("Addition\n"); break; ultiplication
10 case SUB: printf("Subtraction\n"); break;
11 case MUL: printf ("Multiplication\n"); bikns for menu choices
12 case DIV: printf("Division\n"); break;
13 case EXIT: printf("Exiting\n"); break;
14 default: printf("Invalid\n");
15 }
16 return 0;
17 ¥

otiprakash Mishra

Program 13: Nested Union in Structure

1 #include <stdio.h> OUtPUt'

§ Stz‘;:z E:Ei?gg?{ Alice: $50/hour
. ’ Bob: $5000/month

4 union {

5 int hourly_rate;

6 int monthly_salary; Union saves space for variant data

7 } pay;

8 int is_hourly;

9 };

10 int main() {

11 struct Employee el = {"Alice", {.hourly_rate=50}, 1};

12 struct Employee e2 = {"Bob", {.monthly_salary=5000}, 0};

13 printf("%s: ", el.name);

14 if (el.is_hourly)

15 printf ("$%d/hour\n", el.pay.hourly_rate);

16 printf("%s: ", e2.name);

17 if (!e2.is_hourly)

18 printf ("$%d/month\n", e2.pay.monthly_salary);

19 return 0;

20 ¥

yotiprakash Mishra

Deck 21

Program 14:

1 #include <stdio
2 typedef enum {
3 NORTH ,

4 SOUTH,

5 EAST,

6 WEST

7 Y} Direction;

8 int main() {

9 Direction d =

Enum with typedef

.h> Output
Direction: 0
Changed to: 2
No need to write ’enum’
typedef simplifies usage
NORTH;

10 printf ("Direction: %d\n", d);

11 d = EAST;

12 printf ("Changed to: %d\n", d);

13 printf ("No need to write ’enum’\n");
14 return 0;
15}

yotiprakash Mishra i Deck 21

Program 15: Union with Diff

Output:

1 #include <stdio.h>

é union Ml}_(ed t Union size: 8 bytes
char c;

2 short s; r':har: 1, short: 2

5 int i; int: 4, long: 8

6 long 1; do{lble: '8

7 double d; Union size = largest member

8 1

9 int main() { Size is max(long, double) = 8

10 union Mixed m;

11 printf ("Union size: %lu bytes\n", sizeof(m));

12 printf ("char: %lu, short: %lu\n",

13 sizeof (char), sizeof (short));

14 printf ("int: %lu, long: %lu\n",

15 sizeof (int), sizeof (long));

16 printf ("double: %lu\n", sizeof (double));

17 printf ("Union size = largest member\n");

18 return 0;

19 }

otiprakash Mishra

18/26

Program 16: Bit Fields in

1
2
3
4
5
6
7
8

Output:

all = 5
Binary: flag3=1 flag2=0 flagl=1

#include <stdio.h>
union Flags {
unsigned int all;
struct {
unsigned int flagl : 1;
unsigned int flag2 : 1; Access individual bits or whole value
unsigned int flag3 : 1;
unsigned int reserved : 29;
9 } bits;
10 };
11 int main() {
12 union Flags f;
13 f.all = 0;
14 f.bits.flagl = 1;
15 f.bits.flag3 = 1;
16 printf("all = %u\n", f.all);
17 printf ("Binary: flag3=ju flag2=ju flagi=ju\n",

18 f.bits.flag3, f.bits.flag2, f.bits.flagl);
19 return 0;
20 3}

otiprakash Mishra

Program 17: Enum for Return Codes

PN A WN R

#include <stdio.h>

typedef enum {
0K = 0,
ERROR_NULL_PTR =
ERROR_NO_MEMORY =
ERROR_INVALID = -3

} Status;

Status processData(int *data) {
if (data == NULL)

return ERROR_NULL_PTR;

return 0K;

-1,
-2,

}
int main() {

Status s = processData(NULL);

if (s == 0K)
printf ("Success\n");
else

printf ("Error code:
return O;

%d\n",

yotiprakash Mishra

Output:

Error code:

Meaningful error codes with enum

s);

Deck 21

=il

Program 18: Union

1
2
3
4
5
6
7
8

};

#include <stdio.h>
union IPAddress {

unsigned int addr;

unsigned char octets[4];

int main() {

union IPAddress ip
ip.octets[0] = 192
ip.octets[1] = 168
ip.octets[2] = 1;
ip.octets[3] = 1;

H

H

for IP Address

printf ("IP: %u.%u.%u.%u\n",
ip.octets[0], ip.octets[1],
.octets [31);

ip.octets[2], ip

printf ("As integer:

return O;

yotiprakash Mishra

%ul\n",

ip.addr);

Output:

IP: 192.168.1.1
As integer: 16885952

Access as octets or full integer

Deck 21

Program 19: Enum Boolean Type

1 #include <stdio.h> OUtPUt'
2 typedef enum { FALSE = 0, TRUE = 1 } Bool; .
X : 10 is even
3 Bool isEven(int n) { 7 is odd
4 return (n % 2 == 0) ? TRUE FALSE;
5}
6 int main() { Custom boolean type before C99
7 int num = 10;
8 Bool result = isEven(num);
9 if (result == TRUE)
10 printf ("%d is even\n", num);
11 else
12 printf ("%d is odd\n", num);
13 num = 7;
14 if (isEven(num))
15 printf ("%d is even\n", num);
16 else
17 printf ("%d is odd\n", num);
18 return O0;
19 ¥

yotiprakash Mishra

Deck 21

Program 20: Complex Tagged Union Example

1 #include <stdio.h> OUtPUt'
2 enum DataType { TYPE_INT, TYPE_FLOAT, TYPE_STR_}:

s Int: 42
3 struct Variant {
4 enum DataType type; R CENAE Eagt

R yp ypes String: Hello

5 union {
6 int i;
7 float f; Variant type for different data
8 char x*s;
9 } value;
10 3};

11 void printVariant(struct Variant v) {
12 switch(v.type) {

13 case TYPE_INT: printf("Int: %d\n", v.value.i); break;

14 case TYPE_FLOAT: printf("Float: %.2f\n", v.value.f); break;
15 case TYPE_STR: printf("String: %s\n", v.value.s); break;

16 }

17)

18 int main() {

19 struct Variant v1={TYPE_INT, {.i=42}};

20 struct Variant v2={TYPE_FLOAT, {.f=3.14}};
21 struct Variant v3={TYPE_STR, {.s="Hello"}};

22 printVariant(v1l); printVariant(v2); printVariant(v3);
23 return 0;
24}

otiprakash Mishra

When to Use Enum

Defining named constants (days, months, states)
Menu options and user choices

Error codes and status values

State machine states

Configuration flags

Direction or position constants

Makes code self-documenting

Better than magic numbers

Prof. Jyotiprakash Mishra C Programming - Deck 21

When to Use Union

Only one member needed at a time
Memory-constrained environments

Type punning (viewing data as different types)
Implementing variant types

Hardware register access

Protocol message parsing

Saving memory in large arrays

Always use with a tag to track active member

Prof. Jyotiprakash Mishra C Programming - Deck 21

Key Takeaways

Enum: Named integer constants for readability
Enum values auto-increment from 0 or custom start
Union: Members share same memory location
Union size = size of largest member

Only one union member valid at a time

Tagged union combines enum and union safely
Enum improves code maintainability

Union saves memory but requires care

Both make code more expressive

Understanding both is important for systems programming

Prof. Jyotiprakash Mishra C Programming - Deck 21 26 /26

