
C Programming - Deck 21
Enumerations and Unions

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming - Deck 21 1 / 26

Enumerations (enum)

User-defined data type for named integer constants

Makes code more readable and maintainable

Syntax: enum name {value1, value2, ...};
Default values start at 0 and increment by 1

Can assign custom values

Internally stored as integers

Used for states, days, months, status codes, etc.

Better than using magic numbers

Prof. Jyotiprakash Mishra C Programming - Deck 21 2 / 26

Program 1: Basic Enum Declaration

1 #include <stdio.h>

2 enum Day {

3 SUNDAY ,

4 MONDAY ,

5 TUESDAY ,

6 WEDNESDAY ,

7 THURSDAY ,

8 FRIDAY ,

9 SATURDAY

10 };

11 int main() {

12 enum Day today = WEDNESDAY;

13 printf("Today is day: %d\n", today);

14 printf("SUNDAY = %d\n", SUNDAY);

15 printf("MONDAY = %d\n", MONDAY);

16 printf("SATURDAY = %d\n", SATURDAY);

17 return 0;

18 }

Output:
Today is day: 3

SUNDAY = 0

MONDAY = 1

SATURDAY = 6

Default values: 0, 1, 2, 3, ...

Prof. Jyotiprakash Mishra C Programming - Deck 21 3 / 26

Program 2: Enum with Custom Values

1 #include <stdio.h>

2 enum ErrorCode {

3 SUCCESS = 0,

4 FILE_NOT_FOUND = 404,

5 SERVER_ERROR = 500,

6 TIMEOUT = 408

7 };

8 int main() {

9 enum ErrorCode status = FILE_NOT_FOUND;

10 printf("Status: %d\n", status);

11 printf("SUCCESS = %d\n", SUCCESS);

12 printf("SERVER_ERROR = %d\n", SERVER_ERROR);

13 printf("TIMEOUT = %d\n", TIMEOUT);

14 return 0;

15 }

Output:
Status: 404

SUCCESS = 0

SERVER_ERROR = 500

TIMEOUT = 408

Can assign any integer values

Prof. Jyotiprakash Mishra C Programming - Deck 21 4 / 26

Program 3: Enum with Partial Custom Values

1 #include <stdio.h>

2 enum Month {

3 JAN = 1,

4 FEB ,

5 MAR ,

6 APR ,

7 MAY ,

8 JUN ,

9 JUL ,

10 AUG ,

11 SEP ,

12 OCT ,

13 NOV ,

14 DEC

15 };

16 int main() {

17 printf("JAN = %d\n", JAN);

18 printf("FEB = %d\n", FEB);

19 printf("DEC = %d\n", DEC);

20 return 0;

21 }

Output:
JAN = 1

FEB = 2

DEC = 12

After custom value, auto-increment continues

Prof. Jyotiprakash Mishra C Programming - Deck 21 5 / 26

Program 4: Switch Case with Enum

1 #include <stdio.h>

2 enum Color { RED , GREEN , BLUE , YELLOW };

3 int main() {

4 enum Color c = GREEN;

5 switch(c) {

6 case RED:

7 printf("Red color\n");

8 break;

9 case GREEN:

10 printf("Green color\n");

11 break;

12 case BLUE:

13 printf("Blue color\n");

14 break;

15 case YELLOW:

16 printf("Yellow color\n");

17 break;

18 }

19 return 0;

20 }

Output:
Green color

Enums make switch statements readable

Prof. Jyotiprakash Mishra C Programming - Deck 21 6 / 26

Program 5: Enum for State Machine

1 #include <stdio.h>

2 enum State { IDLE , RUNNING , PAUSED , STOPPED };

3 int main() {

4 enum State current = IDLE;

5 printf("Initial state: %d\n", current);

6 current = RUNNING;

7 printf("Changed to: %d\n", current);

8 current = PAUSED;

9 printf("Changed to: %d\n", current);

10 current = STOPPED;

11 printf("Final state: %d\n", current);

12 return 0;

13 }

Output:
Initial state: 0

Changed to: 1

Changed to: 2

Final state: 3

Enums perfect for state management

Prof. Jyotiprakash Mishra C Programming - Deck 21 7 / 26

Unions

User-defined data type like structure

All members share the same memory location

Only one member can hold value at a time

Size equals size of largest member

Syntax: union name {type1 m1; type2 m2; ...};
Memory efficient when only one member used at a time

Useful for type punning and variant types

Writing to one member overwrites others

Prof. Jyotiprakash Mishra C Programming - Deck 21 8 / 26

Program 6: Basic Union Declaration

1 #include <stdio.h>

2 union Data {

3 int i;

4 float f;

5 char c;

6 };

7 int main() {

8 union Data d;

9 d.i = 10;

10 printf("d.i = %d\n", d.i);

11 d.f = 3.14;

12 printf("d.f = %.2f\n", d.f);

13 printf("d.i now = %d (garbage)\n", d.i);

14 d.c = ’A’;

15 printf("d.c = %c\n", d.c);

16 printf("d.f now = %.2f (garbage)\n", d.f);

17 return 0;

18 }

Output:
d.i = 10

d.f = 3.14

d.i now = 1078523331 (garbage)

d.c = A

d.f now = 0.00 (garbage)

Only one member valid at a time

Prof. Jyotiprakash Mishra C Programming - Deck 21 9 / 26

Program 7: Union vs Struct Size

1 #include <stdio.h>

2 struct StructData {

3 int i;

4 float f;

5 char c;

6 };

7 union UnionData {

8 int i;

9 float f;

10 char c;

11 };

12 int main() {

13 printf("Struct size: %lu bytes\n",

14 sizeof(struct StructData));

15 printf("Union size: %lu bytes\n",

16 sizeof(union UnionData));

17 printf("int: %lu, float: %lu, char: %lu\n",

18 sizeof(int), sizeof(float), sizeof(char));

19 return 0;

20 }

Output:
Struct size: 12 bytes

Union size: 4 bytes

int: 4, float: 4, char: 1

Union takes size of largest member

Prof. Jyotiprakash Mishra C Programming - Deck 21 10 / 26

Program 8: Union Memory Layout

1 #include <stdio.h>

2 union Data {

3 int i;

4 float f;

5 char c;

6 };

7 int main() {

8 union Data d;

9 printf("Address of union: %p\n", (void *)&d);

10 printf("Address of d.i: %p\n", (void *)&d.i);

11 printf("Address of d.f: %p\n", (void *)&d.f);

12 printf("Address of d.c: %p\n", (void *)&d.c);

13 printf("All members share same address\n");

14 return 0;

15 }

Output:
Address of union: 0x7ffeeb3c4a10

Address of d.i: 0x7ffeeb3c4a10

Address of d.f: 0x7ffeeb3c4a10

Address of d.c: 0x7ffeeb3c4a10

All members share same address

All members at same memory location

Prof. Jyotiprakash Mishra C Programming - Deck 21 11 / 26

Program 9: Union for Type Conversion

1 #include <stdio.h>

2 union Convert {

3 int i;

4 char bytes [4];

5 };

6 int main() {

7 union Convert c;

8 c.i = 0x12345678;

9 printf("Integer: 0x%X\n", c.i);

10 printf("Bytes: ");

11 int i;

12 for (i = 0; i < 4; i++) {

13 printf("0x%02X ", (unsigned char)c.bytes[i]);

14 }

15 printf("\n");

16 return 0;

17 }

Output:
Integer: 0x12345678

Bytes: 0x78 0x56 0x34 0x12

Little-endian byte order visible

Prof. Jyotiprakash Mishra C Programming - Deck 21 12 / 26

Program 10: Tagged Union (Discriminated Union)

1 #include <stdio.h>

2 enum Type { INT , FLOAT , CHAR };

3 struct Tagged {

4 enum Type type;

5 union {

6 int i;

7 float f;

8 char c;

9 } data;

10 };

11 int main() {

12 struct Tagged t1 = {INT , {.i = 42}};

13 struct Tagged t2 = {FLOAT , {.f = 3.14}};

14 if (t1.type == INT)

15 printf("t1: %d\n", t1.data.i);

16 if (t2.type == FLOAT)

17 printf("t2: %.2f\n", t2.data.f);

18 return 0;

19 }

Output:
t1: 42

t2: 3.14

Tag indicates which member is valid

Prof. Jyotiprakash Mishra C Programming - Deck 21 13 / 26

Program 11: Union in Array

1 #include <stdio.h>

2 union Number {

3 int i;

4 float f;

5 };

6 int main() {

7 union Number arr [3];

8 arr [0].i = 10;

9 arr [1].f = 3.14;

10 arr [2].i = 20;

11 printf("arr [0].i = %d\n", arr [0].i);

12 printf("arr [1].f = %.2f\n", arr [1].f);

13 printf("arr [2].i = %d\n", arr [2].i);

14 printf("Array size: %lu bytes\n", sizeof(arr));

15 return 0;

16 }

Output:
arr [0].i = 10

arr [1].f = 3.14

arr [2].i = 20

Array size: 12 bytes

Array of unions: 3 * 4 bytes = 12

Prof. Jyotiprakash Mishra C Programming - Deck 21 14 / 26

Program 12: Enum for Menu System

1 #include <stdio.h>

2 enum Menu { ADD=1, SUB , MUL , DIV , EXIT };

3 int main() {

4 int choice;

5 printf("1. Add\n2. Subtract\n3. Multiply\n");

6 printf("4. Divide\n5. Exit\nChoice: ");

7 scanf("%d", &choice);

8 switch(choice) {

9 case ADD: printf("Addition\n"); break;

10 case SUB: printf("Subtraction\n"); break;

11 case MUL: printf("Multiplication\n"); break;

12 case DIV: printf("Division\n"); break;

13 case EXIT: printf("Exiting\n"); break;

14 default: printf("Invalid\n");

15 }

16 return 0;

17 }

Output:
1. Add

2. Subtract

3. Multiply

4. Divide

5. Exit

Choice: 3

Multiplication

Enums for menu choices

Prof. Jyotiprakash Mishra C Programming - Deck 21 15 / 26

Program 13: Nested Union in Structure

1 #include <stdio.h>

2 struct Employee {

3 char name [20];

4 union {

5 int hourly_rate;

6 int monthly_salary;

7 } pay;

8 int is_hourly;

9 };

10 int main() {

11 struct Employee e1 = {"Alice", {. hourly_rate =50}, 1};

12 struct Employee e2 = {"Bob", {. monthly_salary =5000} , 0};

13 printf("%s: ", e1.name);

14 if (e1.is_hourly)

15 printf("$%d/hour\n", e1.pay.hourly_rate);

16 printf("%s: ", e2.name);

17 if (!e2.is_hourly)

18 printf("$%d/month\n", e2.pay.monthly_salary);

19 return 0;

20 }

Output:
Alice: $50/hour
Bob: $5000/month

Union saves space for variant data

Prof. Jyotiprakash Mishra C Programming - Deck 21 16 / 26

Program 14: Enum with typedef

1 #include <stdio.h>

2 typedef enum {

3 NORTH ,

4 SOUTH ,

5 EAST ,

6 WEST

7 } Direction;

8 int main() {

9 Direction d = NORTH;

10 printf("Direction: %d\n", d);

11 d = EAST;

12 printf("Changed to: %d\n", d);

13 printf("No need to write ’enum ’\n");

14 return 0;

15 }

Output:
Direction: 0

Changed to: 2

No need to write ’enum ’

typedef simplifies usage

Prof. Jyotiprakash Mishra C Programming - Deck 21 17 / 26

Program 15: Union with Different Sizes

1 #include <stdio.h>

2 union Mixed {

3 char c;

4 short s;

5 int i;

6 long l;

7 double d;

8 };

9 int main() {

10 union Mixed m;

11 printf("Union size: %lu bytes\n", sizeof(m));

12 printf("char: %lu, short: %lu\n",

13 sizeof(char), sizeof(short));

14 printf("int: %lu, long: %lu\n",

15 sizeof(int), sizeof(long));

16 printf("double: %lu\n", sizeof(double));

17 printf("Union size = largest member\n");

18 return 0;

19 }

Output:
Union size: 8 bytes

char: 1, short: 2

int: 4, long: 8

double: 8

Union size = largest member

Size is max(long, double) = 8

Prof. Jyotiprakash Mishra C Programming - Deck 21 18 / 26

Program 16: Bit Fields in Union

1 #include <stdio.h>

2 union Flags {

3 unsigned int all;

4 struct {

5 unsigned int flag1 : 1;

6 unsigned int flag2 : 1;

7 unsigned int flag3 : 1;

8 unsigned int reserved : 29;

9 } bits;

10 };

11 int main() {

12 union Flags f;

13 f.all = 0;

14 f.bits.flag1 = 1;

15 f.bits.flag3 = 1;

16 printf("all = %u\n", f.all);

17 printf("Binary: flag3 =%u flag2=%u flag1=%u\n",

18 f.bits.flag3 , f.bits.flag2 , f.bits.flag1);

19 return 0;

20 }

Output:
all = 5

Binary: flag3 =1 flag2 =0 flag1 =1

Access individual bits or whole value

Prof. Jyotiprakash Mishra C Programming - Deck 21 19 / 26

Program 17: Enum for Return Codes

1 #include <stdio.h>

2 typedef enum {

3 OK = 0,

4 ERROR_NULL_PTR = -1,

5 ERROR_NO_MEMORY = -2,

6 ERROR_INVALID = -3

7 } Status;

8 Status processData(int *data) {

9 if (data == NULL)

10 return ERROR_NULL_PTR;

11 return OK;

12 }

13 int main() {

14 Status s = processData(NULL);

15 if (s == OK)

16 printf("Success\n");

17 else

18 printf("Error code: %d\n", s);

19 return 0;

20 }

Output:
Error code: -1

Meaningful error codes with enum

Prof. Jyotiprakash Mishra C Programming - Deck 21 20 / 26

Program 18: Union for IP Address

1 #include <stdio.h>

2 union IPAddress {

3 unsigned int addr;

4 unsigned char octets [4];

5 };

6 int main() {

7 union IPAddress ip;

8 ip.octets [0] = 192;

9 ip.octets [1] = 168;

10 ip.octets [2] = 1;

11 ip.octets [3] = 1;

12 printf("IP: %u.%u.%u.%u\n",

13 ip.octets [0], ip.octets [1],

14 ip.octets [2], ip.octets [3]);

15 printf("As integer: %u\n", ip.addr);

16 return 0;

17 }

Output:
IP: 192.168.1.1

As integer: 16885952

Access as octets or full integer

Prof. Jyotiprakash Mishra C Programming - Deck 21 21 / 26

Program 19: Enum Boolean Type

1 #include <stdio.h>

2 typedef enum { FALSE = 0, TRUE = 1 } Bool;

3 Bool isEven(int n) {

4 return (n % 2 == 0) ? TRUE : FALSE;

5 }

6 int main() {

7 int num = 10;

8 Bool result = isEven(num);

9 if (result == TRUE)

10 printf("%d is even\n", num);

11 else

12 printf("%d is odd\n", num);

13 num = 7;

14 if (isEven(num))

15 printf("%d is even\n", num);

16 else

17 printf("%d is odd\n", num);

18 return 0;

19 }

Output:
10 is even

7 is odd

Custom boolean type before C99

Prof. Jyotiprakash Mishra C Programming - Deck 21 22 / 26

Program 20: Complex Tagged Union Example

1 #include <stdio.h>

2 enum DataType { TYPE_INT , TYPE_FLOAT , TYPE_STR };

3 struct Variant {

4 enum DataType type;

5 union {

6 int i;

7 float f;

8 char *s;

9 } value;

10 };

11 void printVariant(struct Variant v) {

12 switch(v.type) {

13 case TYPE_INT: printf("Int: %d\n", v.value.i); break;

14 case TYPE_FLOAT: printf("Float: %.2f\n", v.value.f); break;

15 case TYPE_STR: printf("String: %s\n", v.value.s); break;

16 }

17 }

18 int main() {

19 struct Variant v1={TYPE_INT , {.i=42}};

20 struct Variant v2={TYPE_FLOAT , {.f=3.14}};

21 struct Variant v3={TYPE_STR , {.s="Hello"}};

22 printVariant(v1); printVariant(v2); printVariant(v3);

23 return 0;

24 }

Output:
Int: 42

Float: 3.14

String: Hello

Variant type for different data

Prof. Jyotiprakash Mishra C Programming - Deck 21 23 / 26

When to Use Enum

Defining named constants (days, months, states)

Menu options and user choices

Error codes and status values

State machine states

Configuration flags

Direction or position constants

Makes code self-documenting

Better than magic numbers

Prof. Jyotiprakash Mishra C Programming - Deck 21 24 / 26

When to Use Union

Only one member needed at a time

Memory-constrained environments

Type punning (viewing data as different types)

Implementing variant types

Hardware register access

Protocol message parsing

Saving memory in large arrays

Always use with a tag to track active member

Prof. Jyotiprakash Mishra C Programming - Deck 21 25 / 26

Key Takeaways

Enum: Named integer constants for readability

Enum values auto-increment from 0 or custom start

Union: Members share same memory location

Union size = size of largest member

Only one union member valid at a time

Tagged union combines enum and union safely

Enum improves code maintainability

Union saves memory but requires care

Both make code more expressive

Understanding both is important for systems programming

Prof. Jyotiprakash Mishra C Programming - Deck 21 26 / 26

