
Multifile Compilation

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra Multifile Compilation 1 / 21



Basic Header File

math ops.h:

1 int add(int a, int b);

2 int subtract(int a, int b);

math ops.c:

1 #include "math_ops.h"

2 int add(int a, int b) {

3 return a + b;

4 }

5 int subtract(int a, int b) {

6 return a - b;

7 }

main.c:

1 #include <stdio.h>

2 #include "math_ops.h"

3 int main() {

4 int x = 10, y = 5;

5 printf("Add: %d\n", add(x, y));

6 printf("Subtract: %d\n", subtract(x, y));

7 return 0;

8 }

Output:

Add: 15

Subtract: 5

Compile:

gcc -c math_ops.c

gcc -c main.c

gcc math_ops.o main.o -o prog

./prog

Prof. Jyotiprakash Mishra Multifile Compilation 2 / 21



Include Guards

utils.h:

1 #ifndef UTILS_H

2 #define UTILS_H

3 void print_message ();

4 #endif

utils.c:

1 #include <stdio.h>

2 #include "utils.h"

3 void print_message () {

4 printf("Hello from utils!\n");

5 }

main.c:

1 #include <stdio.h>

2 #include "utils.h"

3 #include "utils.h"

4 int main() {

5 print_message ();

6 return 0;

7 }

Output:

Hello from utils!

Note:

Include guards prevent multiple

inclusion errors. Header included

twice but compiled once.

Prof. Jyotiprakash Mishra Multifile Compilation 3 / 21



Extern Variables

globals.h:

1 #ifndef GLOBALS_H

2 #define GLOBALS_H

3 extern int counter;

4 extern char name [];

5 #endif

globals.c:

1 int counter = 0;

2 char name[] = "Global";

main.c:

1 #include <stdio.h>

2 #include "globals.h"

3 int main() {

4 printf("Counter: %d\n", counter );

5 printf("Name: %s\n", name);

6 counter = 42;

7 printf("Counter: %d\n", counter );

8 return 0;

9 }

Output:

Counter: 0

Name: Global

Counter: 42

Note:

extern declares variable defined

in another file. Definition in

globals.c, declaration in globals.h

Prof. Jyotiprakash Mishra Multifile Compilation 4 / 21



Static Functions

helper.c:

1 #include <stdio.h>

2 static void internal_func () {

3 printf("Internal helper\n");

4 }

5 void public_func () {

6 printf("Public function\n");

7 internal_func ();

8 }

helper.h:

1 #ifndef HELPER_H

2 #define HELPER_H

3 void public_func ();

4 #endif

main.c:

1 #include "helper.h"

2 int main() {

3 public_func ();

4 return 0;

5 }

Output:

Public function

Internal helper

Note:

static makes function visible

only within its file. Cannot be

called from other files.

Prof. Jyotiprakash Mishra Multifile Compilation 5 / 21



Static Variables

counter.h:

1 #ifndef COUNTER_H

2 #define COUNTER_H

3 void increment ();

4 int get_count ();

5 #endif

counter.c:

1 static int count = 0;

2 void increment () {

3 count ++;

4 }

5 int get_count () {

6 return count;

7 }

main.c:

1 #include <stdio.h>

2 #include "counter.h"

3 int main() {

4 printf("Count: %d\n", get_count ());

5 increment ();

6 increment ();

7 printf("Count: %d\n", get_count ());

8 return 0;

9 }

Output:

Count: 0

Count: 2

Note:

static variable has file scope.

Only accessible within counter.c

through provided functions.

Prof. Jyotiprakash Mishra Multifile Compilation 6 / 21



Multiple Source Files

calc.h:

1 #ifndef CALC_H

2 #define CALC_H

3 int multiply(int a, int b);

4 int divide(int a, int b);

5 #endif

calc.c:

1 #include "calc.h"

2 int multiply(int a, int b) {

3 return a * b;

4 }

5 int divide(int a, int b) {

6 if (b != 0) return a / b;

7 return 0;

8 }

main.c:

1 #include <stdio.h>

2 #include "calc.h"

3 int main() {

4 printf("Multiply: %d\n", multiply(6, 7));

5 printf("Divide: %d\n", divide (20, 4));

6 return 0;

7 }

¡functioncalls > Output:

Multiply: 42

Divide: 5

Compile:

gcc -c calc.c -o calc.o

gcc -c main.c -o main.o

gcc calc.o main.o -o program

Prof. Jyotiprakash Mishra Multifile Compilation 7 / 21



Struct in Header

point.h:

1 #ifndef POINT_H

2 #define POINT_H

3 typedef struct {

4 int x;

5 int y;

6 } Point;

7 Point create_point(int x, int y);

8 void print_point(Point p);

9 #endif

point.c:

1 #include <stdio.h>

2 #include "point.h"

3 Point create_point(int x, int y) {

4 Point p = {x, y};

5 return p;

6 }

7 void print_point(Point p) {

8 printf("(%d, %d)\n", p.x, p.y);

9 }

main.c:

1 #include "point.h"

2 int main() {

3 Point p1 = create_point (10, 20);

4 print_point(p1);

5 return 0;

6 }

Output:

(10, 20)

Note:

Struct definition in header allows

use in all files that include it.

Functions operate on the struct.

Prof. Jyotiprakash Mishra Multifile Compilation 8 / 21



Circular Dependencies

a.h:

1 #ifndef A_H

2 #define A_H

3 typedef struct B B;

4 typedef struct A {

5 int value;

6 B *b_ptr;

7 } A;

8 void print_a(A *a);

9 #endif

b.h:

1 #ifndef B_H

2 #define B_H

3 typedef struct A A;

4 typedef struct B {

5 int value;

6 A *a_ptr;

7 } B;

8 void print_b(B *b);

9 #endif

main.c:

1 #include <stdio.h>

2 #include "a.h"

3 #include "b.h"

4 int main() {

5 A a = {10, NULL};

6 B b = {20, &a};

7 printf("A: %d, B: %d\n", a.value , b.value);

8 return 0;

9 }

Output:

A: 10, B: 20

Note:

Forward declarations break circular

dependencies. Each header declares

the other ’s struct as incomplete.

Prof. Jyotiprakash Mishra Multifile Compilation 9 / 21



Const in Header

constants.h:

1 #ifndef CONSTANTS_H

2 #define CONSTANTS_H

3 extern const int MAX_SIZE;

4 extern const double PI;

5 #endif

constants.c:

1 const int MAX_SIZE = 100;

2 const double PI = 3.14159;

main.c:

1 #include <stdio.h>

2 #include "constants.h"

3 int main() {

4 printf("Max: %d\n", MAX_SIZE );

5 printf("PI: %.5f\n", PI);

6 return 0;

7 }

Output:

Max: 100

PI: 3.14159

Note:

Const variables declared extern

in header , defined in source.

Shared across files as constants.

Prof. Jyotiprakash Mishra Multifile Compilation 10 / 21



Enum in Header

status.h:

1 #ifndef STATUS_H

2 #define STATUS_H

3 typedef enum {

4 SUCCESS ,

5 ERROR ,

6 PENDING

7 } Status;

8 const char* status_string(Status s);

9 #endif

status.c:

1 #include "status.h"

2 const char* status_string(Status s) {

3 switch(s) {

4 case SUCCESS: return "Success";

5 case ERROR: return "Error";

6 case PENDING: return "Pending";

7 default: return "Unknown";

8 }

9 }

main.c:

1 #include <stdio.h>

2 #include "status.h"

3 int main() {

4 Status s = SUCCESS;

5 printf("Status: %s\n", status_string(s));

6 return 0;

7 }

Output:

Status: Success

Note:

Enum definition in header makes

it available to all files. Helper

function converts to string.

Prof. Jyotiprakash Mishra Multifile Compilation 11 / 21



Function Pointers in Header

callback.h:

1 #ifndef CALLBACK_H

2 #define CALLBACK_H

3 typedef void (* Callback )(int);

4 void register_callback(Callback cb);

5 void trigger ();

6 #endif

callback.c:

1 #include "callback.h"

2 static Callback callback = NULL;

3 void register_callback(Callback cb) {

4 callback = cb;

5 }

6 void trigger () {

7 if (callback) callback (42);

8 }

main.c:

1 #include <stdio.h>

2 #include "callback.h"

3 void my_callback(int value) {

4 printf("Callback: %d\n", value);

5 }

6 int main() {

7 register_callback(my_callback );

8 trigger ();

9 return 0;

10 }

Output:

Callback: 42

Note:

Function pointer typedef in header.

Callback stored statically and

invoked when triggered.

Prof. Jyotiprakash Mishra Multifile Compilation 12 / 21



Inline Functions in Header

math.h:

1 #ifndef MATH_H

2 #define MATH_H

3 static inline int square(int x) {

4 return x * x;

5 }

6 static inline int cube(int x) {

7 return x * x * x;

8 }

9 #endif

main.c:

1 #include <stdio.h>

2 #include "math.h"

3 int main() {

4 int n = 5;

5 printf("Square: %d\n", square(n));

6 printf("Cube: %d\n", cube(n));

7 return 0;

8 }

Output:

Square: 25

Cube: 125

Note:

Inline functions in header are

expanded at call site. Use static

inline to avoid multiple definition.

Prof. Jyotiprakash Mishra Multifile Compilation 13 / 21



Library with Multiple Files

string utils.h:

1 #ifndef STRING_UTILS_H

2 #define STRING_UTILS_H

3 int str_len(const char *s);

4 void str_upper(char *s);

5 #endif

string utils.c:

1 #include "string_utils.h"

2 int str_len(const char *s) {

3 int len = 0;

4 while (s[len]) len ++;

5 return len;

6 }

7 void str_upper(char *s) {

8 int i;

9 for (i = 0; s[i]; i++) {

10 if (s[i] >= ’a’ && s[i] <= ’z’)

11 s[i] -= 32;

12 }

13 }

main.c:

1 #include <stdio.h>

2 #include "string_utils.h"

3 int main() {

4 char str[] = "hello";

5 printf("Length: %d\n", str_len(str));

6 str_upper(str);

7 printf("Upper: %s\n", str);

8 return 0;

9 }

Output:

Length: 5

Upper: HELLO

Compile:

gcc -c string_utils.c

gcc -c main.c

gcc string_utils.o main.o -o prog

Prof. Jyotiprakash Mishra Multifile Compilation 14 / 21



Nested Headers

base.h:

1 #ifndef BASE_H

2 #define BASE_H

3 typedef struct {

4 int id;

5 } Base;

6 #endif

derived.h:

1 #ifndef DERIVED_H

2 #define DERIVED_H

3 #include "base.h"

4 typedef struct {

5 Base base;

6 char name [20];

7 } Derived;

8 #endif

main.c:

1 #include <stdio.h>

2 #include <string.h>

3 #include "derived.h"

4 int main() {

5 Derived d;

6 d.base.id = 100;

7 strcpy(d.name , "Test");

8 printf("ID: %d, Name: %s\n",

9 d.base.id, d.name);

10 return 0;

11 }

Output:

ID: 100, Name: Test

Note:

Headers can include other headers.

Include guards prevent multiple

inclusion of base.h.

Prof. Jyotiprakash Mishra Multifile Compilation 15 / 21



Multiple Object Files

add.c:

1 int add(int a, int b) {

2 return a + b;

3 }

sub.c:

1 int sub(int a, int b) {

2 return a - b;

3 }

ops.h:

1 #ifndef OPS_H

2 #define OPS_H

3 int add(int a, int b);

4 int sub(int a, int b);

5 #endif

main.c:

1 #include <stdio.h>

2 #include "ops.h"

3 int main() {

4 printf("Add: %d\n", add(8, 3));

5 printf("Sub: %d\n", sub(8, 3));

6 return 0;

7 }

Output:

Add: 11

Sub: 5

Compile:

gcc -c add.c

gcc -c sub.c

gcc -c main.c

gcc add.o sub.o main.o -o prog

Prof. Jyotiprakash Mishra Multifile Compilation 16 / 21



Global Array Sharing

data.h:

1 #ifndef DATA_H

2 #define DATA_H

3 extern int data [5];

4 void init_data ();

5 void print_data ();

6 #endif

data.c:

1 #include <stdio.h>

2 #include "data.h"

3 int data [5];

4 void init_data () {

5 int i;

6 for (i = 0; i < 5; i++)

7 data[i] = i * 10;

8 }

9 void print_data () {

10 int i;

11 for (i = 0; i < 5; i++)

12 printf("%d ", data[i]);

13 printf("\n");

14 }

main.c:

1 #include "data.h"

2 int main() {

3 init_data ();

4 print_data ();

5 return 0;

6 }

Output:

0 10 20 30 40

Note:

Global array defined in data.c,

declared extern in data.h.

Accessible from any file including

the header.

Prof. Jyotiprakash Mishra Multifile Compilation 17 / 21



Opaque Pointers

handle.h:

1 #ifndef HANDLE_H

2 #define HANDLE_H

3 typedef struct Handle Handle;

4 Handle* create_handle(int val);

5 void set_value(Handle *h, int val);

6 int get_value(Handle *h);

7 void destroy_handle(Handle *h);

8 #endif

handle.c:

1 #include <stdlib.h>

2 #include "handle.h"

3 struct Handle {

4 int value;

5 };

6 Handle* create_handle(int val) {

7 Handle *h = malloc(sizeof(Handle ));

8 h->value = val;

9 return h;

10 }

11 void set_value(Handle *h, int val) {

12 h->value = val;

13 }

14 int get_value(Handle *h) {

15 return h->value;

16 }

17 void destroy_handle(Handle *h) {

18 free(h);

19 }

main.c:

1 #include <stdio.h>

2 #include "handle.h"

3 int main() {

4 Handle *h = create_handle (100);

5 printf("Value: %d\n", get_value(h));

6 set_value(h, 200);

7 printf("Value: %d\n", get_value(h));

8 destroy_handle(h);

9 return 0;

10 }

Output:

Value: 100

Value: 200

Note:

Opaque pointer hides implementation.

Struct details only in .c file.

Encapsulation in C.

Prof. Jyotiprakash Mishra Multifile Compilation 18 / 21



Conditional Compilation in Header

debug.h:

1 #ifndef DEBUG_H

2 #define DEBUG_H

3 #include <stdio.h>

4 #ifdef DEBUG

5 #define LOG(msg) printf("DEBUG: %s\n", msg)

6 #else

7 #define LOG(msg)

8 #endif

9 #endif

main.c:

1 #define DEBUG

2 #include "debug.h"

3 int main() {

4 LOG("Starting program");

5 printf("Hello\n");

6 LOG("Ending program");

7 return 0;

8 }

Output:

DEBUG: Starting program

Hello

DEBUG: Ending program

Without DEBUG:

Hello

Note:

Conditional macros in headers.

LOG expands to printf when DEBUG

defined , nothing otherwise.

Prof. Jyotiprakash Mishra Multifile Compilation 19 / 21



Version Management

version.h:

1 #ifndef VERSION_H

2 #define VERSION_H

3 #define MAJOR 1

4 #define MINOR 2

5 #define PATCH 3

6 extern const char* get_version ();

7 #endif

version.c:

1 #include <stdio.h>

2 #include "version.h"

3 static char version [20];

4 const char* get_version () {

5 sprintf(version , "%d.%d.%d",

6 MAJOR , MINOR , PATCH);

7 return version;

8 }

main.c:

1 #include <stdio.h>

2 #include "version.h"

3 int main() {

4 printf("Version: %s\n", get_version ());

5 return 0;

6 }

Output:

Version: 1.2.3

Note:

Version numbers as macros in header.

Function formats version string.

Central version management.

Prof. Jyotiprakash Mishra Multifile Compilation 20 / 21



Module Initialization

module.h:

1 #ifndef MODULE_H

2 #define MODULE_H

3 void module_init ();

4 void module_cleanup ();

5 void module_work ();

6 #endif

module.c:

1 #include <stdio.h>

2 #include "module.h"

3 static int initialized = 0;

4 void module_init () {

5 if (! initialized) {

6 printf("Module initialized\n");

7 initialized = 1;

8 }

9 }

10 void module_cleanup () {

11 printf("Module cleaned up\n");

12 initialized = 0;

13 }

14 void module_work () {

15 if (initialized)

16 printf("Module working\n");

17 }

main.c:

1 #include "module.h"

2 int main() {

3 module_init ();

4 module_work ();

5 module_cleanup ();

6 return 0;

7 }

Output:

Module initialized

Module working

Module cleaned up

Note:

Module pattern with init/cleanup.

Static flag tracks initialization.

Common pattern in C libraries.

Prof. Jyotiprakash Mishra Multifile Compilation 21 / 21


