Multifile Compilation

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra Multifile Compilation



~NOoO oA WN =

N UT A WN R

Basic Header File

math_ops.h:

int add(int a, int b);

int subtract(int a, int b);
math_ops.c:

#include "math_ops.h"

int add(int a, int b) {
return a + b;

}

int subtract(int a, int b) {
return a - b;

}

main.c:

#include <stdio.h>
#include "math_ops.h"
int main() {

int x = 10, y = 5;

printf ("Add: %d\n", add(x, y));
printf ("Subtract: %d\n", subtract(x,

return O;

Output:

Add: 15
Subtract: 5
Compile:

gcc -c math_ops.c

gcc -c main.c

gcc math_ops.o main.o -o prog
./prog

Multifile Compilati



Include Guards

utils.h: Output:
1 #ifndef UTILS_H Hello from utils!
2 #define UTILS_H N .
N . ote:
3 void print_message ();
4 #endif Include guards prevent multiple
. inclusion errors. Header included
utils.c: twice but compiled once.
1 #include <stdio.h>
2 #include "utils.h"
3 void print_message() {
4 printf ("Hello from utils!\n");
5}
main.c:

#include <stdio.h>

#include "utils.h"

#include "utils.h"

int main() {
print_message ();
return O;

}

~NOoO oA WN =

Multifile Compilatio



Extern Variables

globals.h: Output:
1 #ifndef GLOBALS_H Counter: 0
2 #define GLOBALS_H Name: Global
3 extern int counter; Counter: 42
4 extern char namel[]; Note:
5 #endif
extern declares variable defined
globals.c: in another file. Definition in
1 int counter = 0; globals.c, declaration in globals.h
2 char name[] = "Global";
main.c:
1 #include <stdio.h>
2 #include "globals.h"
3 int main() {
4 printf ("Counter: %d\n", counter);
5 printf ("Name: %s\n", name);
6 counter = 42;
7 printf ("Counter: %d\n", counter);
8 return O0;
9 ¥

Multifile Compilatio



Static Functions

helper.c: Output:

#include <stdio.h> Public function
static void intermnal_func() { Internal helper
) printf ("Internal helper\n"); Note:
void public_func() { static makes function visible
printf ("Public function\n"); only within its file. Cannot be
internal_func (); called from other files.

O~NOUI A WN R

helper.h:

#ifndef HELPER_H
#define HELPER_H
void public_func();
#endif

ENERENES

main.c:

#include "helper.h"

int main() {
public_func();
return O;

GAWN =

}

Multifile Compilati



Static Variables

counter.h: Output:

#ifndef COUNTER_H Count: 0
#define COUNTER_H Count: 2
void increment ();
int get_count ();
#endif static variable has file scope.
Only accessible within counter.c
through provided functions.

Note:

QA WN =

counter.c:

static int count = 0;

void increment () {
count ++;

}

int get_count () {
return count;

N s WN =

}
main.c:

#include <stdio.h>

#include "counter.h"

int main() {
printf ("Count: %d\n", get_count());
increment ();
increment ();
printf ("Count: %d\n", get_count());
return O;

©O~NOO A WN

Multifile Compilati



Multiple Source

calc.h: ifunctioncalls > output:

#ifndef CALC_H Multiply: 42

#define CALC_H Divide: 5

}nt m?lFlply(lnt a, int b); Compile:

int divide(int a, int b);

#endif gcc -c calc.c -o calc.o
gcc -c main.c -o main.o

calc.c:

gcc calc.o main.o -o program
#include "calc.h"

int multiply(int a, int b) {
return a * b;

}

int divide(int a, int b) {
if (b != 0) return a / b;
return 0;

}

main.c:

#include <stdio.h>

#include "calc.h"

int main() {
printf ("Multiply: %d\n", multiply (6, 7));
printf ("Divide: %d\n", divide (20, 4));
return 0;

by

Multifile Compilati



©O~NOU R WN ©O~NO O A WN =

DO WN =

Struct in Header

point.h:

#ifndef POINT_H
#define POINT_H
typedef struct {

int x;

int y;
} Point;
Point create_point (int
void print_point (Point
#endif

point.c:

#include <stdio.h>

#include "point.h"

Point create_point (int
Point p = {x, y};
return p;

}

void print_point (Point

x, int y);

P

x, int y) {

p) {

printf (" (%d, %d)\n", p.x, p.y);

}
main.c:

#include "point.h"
int main() {

Point pl = create_point (10,

print_point (p1);
return O;

20);

Output:
(10, 20)
Note:

Struct definition in header allows
use in all files that include it.
Functions operate on the struct.

Multifile Compilati



Circular Dependencies

a.h: Output:

#ifndef A_H A: 10, B: 20

#define A_H

typedef struct

typedef struct Forward declarations break circular
int value; dependencies. Each header declares
B *b_ptr; the other’s struct as incomplete.

} oA

void print_a(A *a);

#endif

b.h:

#ifndef B_H
#define B_H
typedef struct
typedef struct
int value;
A *xa_ptr;
} B;
void print_b(B *b);
#endif

Note:

©O~NO O A WN =
= w
~w

©O~NOU R WN
w =

main.c:

#include <stdio.h>
#include "a.h"
#include "b.h"
int main() {
A a = {10, NULL};
B b = {20, &a};

DO WN =

Multifile Compilati



Const in Header

constants.h: Output:
#ifndef CONSTANTS_H Max: 100
#define CONSTANTS_H PI: 3.14159

extern const int MAX_SIZE;
extern const double PI;
#endif Const variables declared extern
in header, defined in source.
Shared across files as constants.

Note:

GAWN R

constants.c:

1 const int MAX_SIZE = 100;
2 const double PI = 3.14159;

main.c:
1 #include <stdio.h>
2 #include "constants.h"
3 int main() {
4 printf ("Max: %d\n", MAX_SIZE);
5 printf ("PI: %.5f\n", PI);
6 return 0;
7}

Multifile Compilati



Enum in Header

status.h: Output:

#ifndef STATUS_H Status: Success

#define STATUS_H

typedef enum {
SUCCESS , Enum definition in header makes
ERROR, it available to all files. Helper
PENDING function converts to string.

} Status;

const char* status_string(Status s);

#endif

Note:

©O~NO O A WN =

status.c:

#include "status.h"
const char* status_string(Status s) {
switch(s) {
case SUCCESS: return "Success'";
case ERROR: return "Error";
case PENDING: return "Pending";
default: return "Unknown";

©O~NOU R WN

}
main.c:

#include <stdio.h>

#include "status.h"

int main() {
Status s = SUCCESS;
printf ("Status: %s\n", status_string(s));
return O;

DO WN =

Multifile Compilati 11/21



Function Pointers in Header

callback.h: Output:

#ifndef CALLBACK_H Callback: 42
#define CALLBACK_H

typedef void (*#Callback) (int);
void register_callback(Callback cb); Function pointer typedef in header.
void trigger (); Callback stored statically and
#endif invoked when triggered.

Note:

OO WN =

callback.c:

#include "callback.h"

static Callback callback = NULL;

void register_callback(Callback cb) {
callback = cb;

void trigger() {
if (callback) callback(42);

O~NOU A WN -

¥
main.c:

#include <stdio.h>

#include "callback.h"

void my_callback(int value) {
printf ("Callback: %d\n", value);

}

int main() {
register_callback(my_callback);
trigger ();
return O;

CLONOUIEWNH

=

Multifile Compilati 12/21



Inline Functions in Header

math.h: Output:

#ifndef MATH_H Square: 25

#define MATH_H Cube: 125

static inline int square(int x) {
return x * Xx;

} Inline functions in header are

static inline int cube(int x) { expanded at call site. Use static
return x * x * X; inline to avoid multiple definition.

Note:

}
#endif

© N U A WN -

main.c:

#include <stdio.h>

#include "math.h"

int main() {
int n = 5;
printf ("Square: %d\n", square(n));
printf ("Cube: %d\n", cube(n));
return O;

O~NOUIAWN -

Multifile Compilati 13 /21



A WN =

W~NOUI A WN

DO WN =

Library with Multiple Files

string_utils.h: Output:
#ifndef STRING_UTILS_H Length: 5
#define STRING_UTILS_H Upper: HELLO
1n§ str_len(const char *s); Compile:
void str_upper (char *s);
#endif gcc -c string_utils.c

. . gcc -c main.c
string_utils.c: . . .

gcc string_utils.o main.o -o prog

#include "string_ utils.h"
int str_len(const char xs) {
int len = 0;
while (s[len]) len++;
return len;
void str_upper (char *s) {
int i;
for (i = 0; s[il; i++) {
if (s[i] >= ’a’ && s[i]l <= ’z’)
s[i] -= 32;
¥
¥
main.c:
#include <stdio.h>
#include "string_utils.h"
int main() {
char str[] = "hello";
printf ("Length: %d\n", str_len(str));
str_upper (str);

Multifile Compilati




Nested Headers

base.h: Output:

#ifndef BASE_H ID: 100, Name: Test
#define BASE_H
typedef struct {

int id; Headers can include other headers.
} Base; Include guards prevent multiple
#endif inclusion of base.h.

derived.h:

#ifndef DERIVED_H
#define DERIVED_H
#include "base.h"
typedef struct {
Base base;
char name [20];
} Derived;
#endif

Note:

OO WN =

O~NOU A WN -

main.c:

1 #include <stdio.h>
2 #include <string.h>
3 #include "derived.h"
4 int main() {

5 Derived d;

6 d.base.id = 100;
7

8

9

0

1

strcpy (d.name, "Test");
printf ("ID: %d, Name: %s\n",

d.base.id, d.name);
return O;

Multifile Compilati



Multiple Object Files

add.c: Output:

1 int add(int a, int b) { Add: 11
return a + b; Sub: 5

N

3}

sub.c:

Compile:

gcc -c add.c
1 int sub(int a, int b) { gcc -c sub.c
return a - b; gcc -c main.c
3} gcc add.o sub.o main.o -o prog

N

ops.h:

#ifndef OPS_H

#define OPS_H

int add(int a, int b);
int sub(int a, int b);
#endif

A WN =

main.c:

#include <stdio.h>

#include "ops.h"

int main() {
printf ("Add: %d\n", add(8, 3));
printf ("Sub: %d\n", sub(8, 3));
return O;

~NOoO oA WN =

Multifile Compilati 16 /21



Global Array Sharing

data.h: Output:

#ifndef DATA_H 0 10 20 30 40

#define DATA_H

extern int datal[5];

void init_data(); Global array defined in data.c,

void print_data(); declared extern in data.h.

#endif Accessible from any file including
the header.

Note:

OO WN =

data.c:

#include <stdio.h>
#include "data.h"
int datal[5];
void init_data() {
int i;
for (i = 0;

;i
datali]l = i

O~NOU A WN -

¥

9 void print_data() {

10 int 1i;

11 for (i = 0; i < B; i++)
12 printf ("%d ", datalil);
13 printf ("\n");

14 }

main.c:

#include "data.h"
int main() {
init_data();
print_data();
o 0:

AW N

Multifile Compilati 17 /21



N U A WN

O~NOUI A WN R

Opaque Pointers

handle.h:

#ifndef
#define

HANDLE_H

HANDLE_H

typedef struct Handle Handle;
Handle* create_handle(int val);
void set_value(Handle *h, int val);
int get_value (Handle *h);

void destroy_handle(Handle *h);
#endif

handle.c:

=

#include <stdlib.h>

#include "handle.h"

struct Handle {
int value;

¥

Handle* create_handle(int val) {
Handle *h malloc(sizeof (Handle));
h->value val;
return h;

¥
void set_value(Handle *h,
h->value val;

int val) {

}
int get_value(Handle #*h) {
return h->value;

void destroy_handle (Handle *h) {
free(h);

Multifile Compilati

CLOWNOUTEWNH

main.c:

#include <stdio.h>

#include "handle.h"

int main() {
Handle *h = create_handle (100);
printf ("Value: %d\n", get_value(h));
set_value (h, 200);
printf ("Value: %d\n", get_value(h));

destroy_handle(h);
return O;

}

Output:
Value: 100
Value: 200
Note:

Opaque pointer hides implementation.
Struct details only in .c file.
Encapsulation in C.

18/21



Conditional Compilation in Header

debug.h: Output:
1 #ifndef DEBUG_H DEBUG: Starting program
2 #define DEBUG_H Hello
3 #include <stdio.h> DEBUG: Ending program
4 #ifdef DEBUG Without DEBUG:
5 #define LOG(msg) printf ("DEBUG: %s\n", msg)
6 #else Hello
7 #define LOG(msg) Note:
8 #endif
9 #endif Conditional macros in headers.
. LOG expands to printf when DEBUG
main.c: defined, nothing otherwise.
1 #define DEBUG
2 #include "debug.h"
3 int main() {
4 LOG("Starting program");
5 printf ("Hello\n");
6 LOG("Ending program");
7 return O;
8 ¥

Multifile Compilati 19/21



Version Managemen

version.h: Output:

#ifndef VERSION_H Version: 1.2.3
#define VERSION_H
#define MAJOR 1
#define MINOR 2 Version numbers as macros in header.
#define PATCH 3 Function formats version string.
extern const char* get_version(); Central version management.

#endif

Note:

~NOoO oA WN =

version.c:

#include <stdio.h>
#include "version.h"
static char version[20];
const char* get_version() {
sprintf (version, "%d.%d.%d",
MAJOR, MINOR, PATCH);
return version;

O~NOU A WN R

}
main.c:

#include <stdio.h>

#include "version.h"

int main() {
printf ("Version: %s\n", get_version());
return O;

U E WN

Multifile Compilati 20/21



OO EWN =

0N A WN -

Module Initialization

module.h:

#ifndef MODULE_H
#define MODULE_H

void module_init ();
void module_cleanup();
void module_work();
#endif

module.c:

#include <stdio.h>
#include "module.h"
static int initialized = O0;
void module_init() {
if (!initialized) {
printf ("Module initialized\n");
initialized = 1;
}
¥
void module_cleanup () {
printf ("Module cleaned up\n");
initialized = 0;
}
void module_work () {
if (initialized)
printf ("Module working\n");

main.c:

NoO oA WN =

}
Output:

Module
Module
Module

Note:

Module
Static
Common

Multifile Compilati

#include "module.h"

int main() {
module_init ();
module_work ();
module_cleanup();
return O;

initialized
working
cleaned up

pattern with init/cleanup.
flag tracks initialization.
pattern in C libraries.




