
C Preprocessor

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Preprocessor 1 / 21

Object-like Macros

Program 1:

1 #include <stdio.h>

2 #define PI 3.14159

3 #define MAX 100

4 #define MESSAGE "Hello , World!"

5 int main() {

6 printf("PI: %f\n", PI);

7 printf("MAX: %d\n", MAX);

8 printf("%s\n", MESSAGE);

9 double area = PI * 5 * 5;

10 printf("Area: %f\n", area);

11 return 0;

12 }

Output:

PI: 3.141590

MAX: 100

Hello , World!

Area: 78.539750

Note:

Object -like macros are simple

text replacements. Preprocessor

replaces PI with 3.14159 before

compilation.

Prof. Jyotiprakash Mishra C Preprocessor 2 / 21

Function-like Macros

Program 2:

1 #include <stdio.h>

2 #define SQUARE(x) ((x) * (x))

3 #define MAX(a, b) ((a) > (b) ? (a) : (b))

4 #define MIN(a, b) ((a) < (b) ? (a) : (b))

5 int main() {

6 int n = 5;

7 printf("Square: %d\n", SQUARE(n));

8 printf("Max: %d\n", MAX(10, 20));

9 printf("Min: %d\n", MIN(10, 20));

10 printf("Square expr: %d\n",

11 SQUARE (3 + 2));

12 return 0;

13 }

Output:

Square: 25

Max: 20

Min: 10

Square expr: 25

Note:

Parentheses around parameters and

whole expression prevent precedence

issues. SQUARE (3+2) expands to

((3+2) * (3+2)) = 25, not 3+2*3+2.

Prof. Jyotiprakash Mishra C Preprocessor 3 / 21

Macro Pitfalls

Program 3:

1 #include <stdio.h>

2 #define SQUARE_BAD(x) x * x

3 #define SQUARE_GOOD(x) ((x) * (x))

4 #define INCREMENT(x) ((x)++)

5 int main() {

6 int a = 5;

7 printf("Bad: %d\n", SQUARE_BAD(a + 1));

8 printf("Good: %d\n", SQUARE_GOOD(a + 1));

9 int b = 5;

10 int c = INCREMENT(b);

11 printf("b: %d, c: %d\n", b, c);

12 return 0;

13 }

Output:

Bad: 11

Good: 36

b: 6, c: 5

Note:

SQUARE_BAD(a+1) expands to a+1*a+1

= 5+1*5+1 = 11 (wrong!)

SQUARE_GOOD(a+1) expands to

((a+1)*(a+1)) = 36 (correct !)

Side effects can cause issues.

Prof. Jyotiprakash Mishra C Preprocessor 4 / 21

Stringification Operator

Program 4:

1 #include <stdio.h>

2 #define PRINT_VAR(x) \

3 printf (#x " = %d\n", x)

4 #define TO_STRING(x) #x

5 int main() {

6 int age = 25;

7 int count = 100;

8 PRINT_VAR(age);

9 PRINT_VAR(count);

10 printf("String: %s\n", TO_STRING(hello));

11 printf("Expr: %s\n",

12 TO_STRING (5 + 3));

13 return 0;

14 }

Output:

age = 25

count = 100

String: hello

Expr: 5 + 3

Note:

operator converts parameter to

string literal. #x becomes "x".

Useful for debugging and logging.

Prof. Jyotiprakash Mishra C Preprocessor 5 / 21

Token Pasting Operator

Program 5:

1 #include <stdio.h>

2 #define CONCAT(a, b) a##b

3 #define VAR_NAME(prefix , num) prefix ##num

4 int main() {

5 int xy = 100;

6 int value1 = 10;

7 int value2 = 20;

8 printf("%d\n", CONCAT(x, y));

9 printf("%d\n", VAR_NAME(value , 1));

10 printf("%d\n", VAR_NAME(value , 2));

11 return 0;

12 }

Output:

100

10

20

Note:

operator pastes tokens together.

a##b becomes ab.

CONCAT(x, y) becomes xy.

VAR_NAME(value , 1) becomes value1.

Prof. Jyotiprakash Mishra C Preprocessor 6 / 21

Conditional Compilation - ifdef

Program 6:

1 #include <stdio.h>

2 #define DEBUG

3 int main() {

4 #ifdef DEBUG

5 printf("Debug mode enabled\n");

6 #endif

7 #ifndef RELEASE

8 printf("Not in release mode\n");

9 #endif

10 #ifdef FEATURE_X

11 printf("Feature X enabled\n");

12 #else

13 printf("Feature X disabled\n");

14 #endif

15 printf("Program running\n");

16 return 0;

17 }

Output:

Debug mode enabled

Not in release mode

Feature X disabled

Program running

Note:

#ifdef checks if macro is defined.

#ifndef checks if not defined.

Code included or excluded based

on macro definitions.

Prof. Jyotiprakash Mishra C Preprocessor 7 / 21

Conditional Compilation - if defined

Program 7:

1 #include <stdio.h>

2 #define FEATURE_A

3 #define FEATURE_B

4 int main() {

5 #if defined(FEATURE_A) && defined(FEATURE_B)

6 printf("Both features enabled\n");

7 #elif defined(FEATURE_A)

8 printf("Only A enabled\n");

9 #elif defined(FEATURE_B)

10 printf("Only B enabled\n");

11 #else

12 printf("No features enabled\n");

13 #endif

14 return 0;

15 }

Output:

Both features enabled

Note:

defined () operator checks if macro

exists. Can combine with logical

operators (&&, ||, !).

#elif provides else -if functionality.

Prof. Jyotiprakash Mishra C Preprocessor 8 / 21

Conditional Compilation - Numeric

Program 8:

1 #include <stdio.h>

2 #define VERSION 3

3 int main() {

4 #if VERSION == 1

5 printf("Version 1 code\n");

6 #elif VERSION == 2

7 printf("Version 2 code\n");

8 #elif VERSION >= 3

9 printf("Version 3+ code\n");

10 #else

11 printf("Unknown version\n");

12 #endif

13 printf("Version: %d\n", VERSION);

14 return 0;

15 }

Output:

Version 3+ code

Version: 3

Note:

#if can evaluate constant integer

expressions. Supports comparison

operators (==, !=, <, >, <=, >=).

Useful for version control.

Prof. Jyotiprakash Mishra C Preprocessor 9 / 21

Predefined Macros

Program 9:

1 #include <stdio.h>

2 int main() {

3 printf("File: %s\n", __FILE__);

4 printf("Line: %d\n", __LINE__);

5 printf("Date: %s\n", __DATE__);

6 printf("Time: %s\n", __TIME__);

7 #ifdef __STDC__

8 printf("Standard C: Yes\n");

9 #endif

10 printf("Line: %d\n", __LINE__);

11 return 0;

12 }

Output:

File: program.c

Line: 4

Date: Jan 16 2026

Time: 20:15:30

Standard C: Yes

Line: 11

Note:

Predefined macros provide

compilation context.

__LINE__ updates dynamically.

Useful for debugging and logging.

Prof. Jyotiprakash Mishra C Preprocessor 10 / 21

Macro Undef

Program 10:

1 #include <stdio.h>

2 #define MAX 100

3 int main() {

4 printf("MAX: %d\n", MAX);

5 #undef MAX

6 #define MAX 200

7 printf("MAX: %d\n", MAX);

8 #undef MAX

9 #ifdef MAX

10 printf("MAX defined\n");

11 #else

12 printf("MAX not defined\n");

13 #endif

14 return 0;

15 }

Output:

MAX: 100

MAX: 200

MAX not defined

Note:

#undef removes macro definition.

Can redefine macro after #undef.

Useful to prevent conflicts with

library macros.

Prof. Jyotiprakash Mishra C Preprocessor 11 / 21

Multiline Macros

Program 11:

1 #include <stdio.h>

2 #define SWAP(a, b, type) \

3 do { \

4 type temp = a; \

5 a = b; \

6 b = temp; \

7 } while (0)

8 int main() {

9 int x = 10, y = 20;

10 printf("Before: x=%d, y=%d\n", x, y);

11 SWAP(x, y, int);

12 printf("After: x=%d, y=%d\n", x, y);

13 return 0;

14 }

Output:

Before: x=10, y=20

After: x=20, y=10

Note:

Backslash continues macro to next

line. do-while (0) ensures macro

acts like single statement in all

contexts (if , else , etc.).

Prof. Jyotiprakash Mishra C Preprocessor 12 / 21

Variadic Macros

Program 12:

1 #include <stdio.h>

2 #define LOG(fmt , ...) \

3 printf("[LOG] " fmt "\n", __VA_ARGS__)

4 #define DEBUG_PRINT(fmt , ...) \

5 printf("%s:%d " fmt "\n", \

6 __FILE__ , __LINE__ , ## __VA_ARGS__)

7 int main() {

8 LOG("Value: %d", 42);

9 LOG("x=%d, y=%d", 10, 20);

10 DEBUG_PRINT("Starting");

11 DEBUG_PRINT("Count: %d", 5);

12 return 0;

13 }

Output:

[LOG] Value: 42

[LOG] x=10, y=20

program.c:9 Starting

program.c:10 Count: 5

Note:

... accepts variable arguments.

__VA_ARGS__ expands to all args.

before __VA_ARGS__ removes

comma if no arguments provided.

Prof. Jyotiprakash Mishra C Preprocessor 13 / 21

Error and Warning Directives

Program 13:

1 #include <stdio.h>

2 #define MIN_VERSION 2

3 #define CURRENT_VERSION 3

4 #if CURRENT_VERSION < MIN_VERSION

5 #error "Version too old"

6 #endif

7 #ifndef PLATFORM

8 #warning "Platform not defined"

9 #endif

10 int main() {

11 printf("Compilation successful\n");

12 printf("Version: %d\n", CURRENT_VERSION);

13 return 0;

14 }

Output:

warning: Platform not defined

Compilation successful

Version: 3

Note:

#error stops compilation with

message. #warning shows warning

but continues. Useful for enforcing

requirements at compile time.

Prof. Jyotiprakash Mishra C Preprocessor 14 / 21

Pragma Directive

Program 14:

1 #include <stdio.h>

2 #pragma message("Compiling program ...")

3 #pragma pack(push , 1)

4 struct Packed {

5 char c;

6 int i;

7 char d;

8 };

9 #pragma pack(pop)

10 struct Normal {

11 char c;

12 int i;

13 char d;

14 };

15 int main() {

16 printf("Packed: %lu\n",

17 sizeof(struct Packed));

18 printf("Normal: %lu\n",

19 sizeof(struct Normal));

20 return 0;

21 }

Output:

Compiling program ...

Packed: 6

Normal: 12

Note:

#pragma provides compiler -specific

directives. pack (1) removes padding.

Normal struct has padding for

alignment. Compiler -dependent.

Prof. Jyotiprakash Mishra C Preprocessor 15 / 21

Include Guard Pattern

myheader.h:

1 #ifndef MYHEADER_H

2 #define MYHEADER_H

3 #define CONSTANT 42

4 int add(int a, int b);

5 #endif

Program 15:

1 #include <stdio.h>

2 #include "myheader.h"

3 #include "myheader.h"

4 int add(int a, int b) {

5 return a + b;

6 }

7 int main() {

8 printf("Constant: %d\n", CONSTANT);

9 printf("Sum: %d\n", add(5, 3));

10 return 0;

11 }

Output:

Constant: 42

Sum: 8

Note:

Include guards prevent multiple

inclusion. Header included twice

but content processed once.

Standard pattern for all headers.

Prof. Jyotiprakash Mishra C Preprocessor 16 / 21

Macro Debugging

Program 16:

1 #include <stdio.h>

2 #define DEBUG

3 #ifdef DEBUG

4 #define DBG(x) printf("DEBUG: " #x \

5 " = %d at line %d\n", x, __LINE__)

6 #else

7 #define DBG(x)

8 #endif

9 int main() {

10 int count = 10;

11 int total = 50;

12 DBG(count);

13 DBG(total);

14 DBG(count + total);

15 return 0;

16 }

Output:

DEBUG: count = 10 at line 12

DEBUG: total = 50 at line 13

DEBUG: count + total = 60 at line 14

Note:

Conditional debug macro. Enabled

when DEBUG defined , disabled

otherwise. No runtime overhead

when disabled.

Prof. Jyotiprakash Mishra C Preprocessor 17 / 21

Assert Macro

Program 17:

1 #include <stdio.h>

2 #define ASSERT(cond) \

3 if (!(cond)) { \

4 printf("Assertion failed: " #cond \

5 " at %s:%d\n", __FILE__ , __LINE__); \

6 return 1; \

7 }

8 int divide(int a, int b) {

9 ASSERT(b != 0);

10 return a / b;

11 }

12 int main() {

13 printf("10/2 = %d\n", divide (10, 2));

14 printf("10/0 = %d\n", divide (10, 0));

15 printf("Done\n");

16 return 0;

17 }

Output:

10/2 = 5

Assertion failed: b != 0

at program.c:9

Note:

Custom assert macro for runtime

checks. Shows condition , file , and

line on failure. Returns early to

prevent undefined behavior.

Prof. Jyotiprakash Mishra C Preprocessor 18 / 21

Platform-Specific Code

Program 18:

1 #include <stdio.h>

2 int main() {

3 #ifdef _WIN32

4 printf("Windows platform\n");

5 const char *separator = "\\";

6 #elif defined(__linux__)

7 printf("Linux platform\n");

8 const char *separator = "/";

9 #elif defined(__APPLE__)

10 printf("macOS platform\n");

11 const char *separator = "/";

12 #else

13 printf("Unknown platform\n");

14 const char *separator = "/";

15 #endif

16 printf("Separator: %s\n", separator);

17 return 0;

18 }

Output (macOS):

macOS platform

Separator: /

Note:

Platform detection using predefined

macros. Different code compiled for

different platforms. Write once ,

compile anywhere.

Prof. Jyotiprakash Mishra C Preprocessor 19 / 21

Compiler-Specific Features

Program 19:

1 #include <stdio.h>

2 int main() {

3 #ifdef __GNUC__

4 printf("GCC version: %d.%d.%d\n",

5 __GNUC__ , __GNUC_MINOR__ ,

6 __GNUC_PATCHLEVEL__);

7 #endif

8 #ifdef __clang__

9 printf("Clang version: %d.%d.%d\n",

10 __clang_major__ , __clang_minor__ ,

11 __clang_patchlevel__);

12 #endif

13 #ifdef _MSC_VER

14 printf("MSVC version: %d\n", _MSC_VER);

15 #endif

16 return 0;

17 }

Output (GCC):

GCC version: 11.2.0

Output (Clang):

Clang version: 13.0.0

Note:

Compiler detection using predefined

macros. Access compiler version.

Enable compiler -specific features.

Prof. Jyotiprakash Mishra C Preprocessor 20 / 21

Build Configuration

Program 20:

1 #include <stdio.h>

2 #ifndef BUILD_TYPE

3 #define BUILD_TYPE "unknown"

4 #endif

5 #ifndef OPTIMIZATION_LEVEL

6 #define OPTIMIZATION_LEVEL 0

7 #endif

8 int main() {

9 printf("Build: %s\n", BUILD_TYPE);

10 printf("Optimization: %d\n",

11 OPTIMIZATION_LEVEL);

12 #if OPTIMIZATION_LEVEL >= 2

13 printf("High optimization enabled\n");

14 #else

15 printf("Low optimization\n");

16 #endif

17 return 0;

18 }

Output:

Build: unknown

Optimization: 0

Low optimization

Compile with flags:

gcc -DBUILD_TYPE =\" release \" \

-DOPTIMIZATION_LEVEL =3 prog.c

Build: release

Optimization: 3

High optimization enabled

Note:

Macros from command line with -D.

Configure build without changing

source code.

Prof. Jyotiprakash Mishra C Preprocessor 21 / 21

