C Preprocessor

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Preprocessor 1/21

Object-like Macros

Program 1: Output:
1 #include <stdio.h> PI: 3.141590
2 #define PI 3.14159 MAX: 100
3 #define MAX 100 Hello, World!
4 #define MESSAGE "Hello, World!" Area: 78.539750
5 int main() {)
6 printf ("PI: %f\n", PI); Note:
7 printf ("MAX: %d\n", MAX); Object-like macros are simple
8 printf ("%s\n", MESSAGE); text replacements. Preprocessor
9 double area = PI * 5 * 5; replaces PI with 3.14159 before
10 printf ("Area: %f\n", area); compilation.
11 return O;
12}

C Preprocessor 2/21

Function-like Macros

Program 2: Output:
1 #include <stdio.h> Square: 25
2 #define SQUARE(x) ((x) * (x)) Max: 20
3 #define MAX(a, b) ((a) > (b) ? (a) : (b)) Min: 10
4 #define MIN(a, b) ((a) < (b) ? (a) : (b)) Square expr: 25
5 1m? main() { Note:
6 int n = 5;
7 printf("Square: %d\n", SQUARE(n)); Parentheses around parameters and
8 printf ("Max: %d\n", MAX(10, 20)); whole expression prevent precedence
9 printf ("Min: %d\n", MIN(10, 20)); issues. SQUARE(3+2) expands to
10 printf ("Square expr: %d\n", ((3+2) * (3+2)) = 25, not 3+2%3+2.
11 SQUARE(3 + 2));
12 return O;
13)

C Preprocessor

Macro Pitfalls

Program 3: Output:
1 #include <stdio.h> Bad: 11
2 #define SQUARE_BAD(x) x * x Good: 36
3 #define SQUARE_GOOD(x) ((x) * (x)) b: 6, c: 5
4 #define INCREMENT (x) ((x)++) Note:
5 int main() {
6 int a = 5; SQUARE_BAD (a+1) expands to a+lxa+l
7 printf ("Bad: %d\n", SQUARE_BAD(a + 1)); = b+1*6+1 = 11 (wrong!)
8 printf ("Good: %d\n", SQUARE_GOOD(a + 1)); SQUARE_GOOD (a+1) expands to
9 int b = 5; ((a+1)*(a+1)) = 36 (correct!)
10 int ¢ = INCREMENT(b); Side effects can cause issues.
11 printf ("b: %d, c: %d\n", b, c);
12 return O;
13}

C Preprocessor 4/21

ringification Operator

Program 4: Output:
1 #include <stdio.h> age = 25
2 #define PRINT_VAR(x) \ count = 100
3 printf (#x " = %d\n", x) String: hello
4 #define TO_STRING(x) #x Expr: 5 + 3
5 intj, main() { Note:
6 int age = 25;
7 int count = 100; # operator converts parameter to
8 PRINT_VAR (age); string literal. #x becomes "x".
9 PRINT_VAR (count); Useful for debugging and logging.

10 printf ("String: %s\n", TO_STRING(hello));
11 printf ("Expr: %s\n",

12 TO_STRING(5 + 3));
13 return O;
14 }

C Preprocessor 5/21

Token Pasting Operator

Program 5:

#include <stdio.h>
#define CONCAT(a, b) a##b
#define VAR_NAME (prefix, num) prefix##num
int main() {

int xy = 100;

int valuel = 10;

int value2 = 20;

printf ("%d\n", CONCAT(x, y));

9 printf ("%d\n", VAR_NAME(value, 1));
10 printf ("%d\n", VAR_NAME(value, 2));
11 return O;

O~NOUI A WN -

C Preprocessor 6/21

Note:

operator pastes tokens together.
a##b becomes ab.

CONCAT(x, y) becomes xy.

VAR_NAME (value, 1) becomes valuel.

NI A WN

Conditional Compilation

Program 6:

#include <stdio.h>
#define DEBUG
int main() {
#ifdef DEBUG
printf ("Debug mode enabled\n");
#endif
#ifndef RELEASE
printf ("Not in release mode\n");
#endif
#ifdef FEATURE_X
printf ("Feature X enabled\n");
#else
printf ("Feature X disabled\n");
#endif
printf ("Program running\n");
return O;

}

Output:

Debug mode enabled
Not in release mode
Feature X disabled
Program running

Note:

#ifdef checks if macro is defined.
#ifndef checks if not defined.
Code included or excluded based

on macro definitions.

C Preprocessor

O~NOU A WN R

Conditional Compilation - if defined

Program 7:

#include <stdio.h>
#define FEATURE_A
#define FEATURE_B
int main() {
#if defined (FEATURE_A) && defined (FEATURE_B)
printf ("Both features enabled\n");
#elif defined (FEATURE_A)
printf ("Only A enabled\n");
#elif defined (FEATURE_B)
printf ("Only B enabled\n");
#else
printf ("No features enabled\n");
#endif
return O;

Output:
Both features enabled
Note:

defined () operator checks if macro
exists. Can combine with logical
operators (&%, |I, !).

#elif provides else-if functionality.

C Preprocessor 8/21

O~NOU A WN R

Conditional Compilation

Program 8:

#include <stdio.h>
#define VERSION 3
int main() {
#if VERSION == 1

printf ("Version 1 code\n");
#elif VERSION == 2

printf ("Version 2 code\n");
#elif VERSION >= 3

printf ("Version 3+ code\n");
#else

printf ("Unknown version\n");
#endif

printf ("Version: %d\n", VERSION);

return O;

- Numeric

Output:

Version 3+ code
Version: 3

Note:

#if can evaluate constant integer
expressions. Supports comparison
operators (==, !=, <, >, <=, >=)
Useful for version control.

C Preprocessor

Predefined Macros

Program 9:
1 #include <stdio.h>
2 int main() {
3 printf ("File: %s\n"
4 printf ("Line: %d\n",
5 printf ("Date: %s\n"
6 printf ("Time: %s\n"
7 #ifdef __STDC__
8 printf ("Standard C:
9 #endif
10 printf ("Line: %d\n"
11 return O;
12}

__FILE__);
__LINE__);
__DATE__);
__TIME__);
Yes\n");
__LINE__);

Output:

File: program.c
Line: 4

Date: Jan 16 2026
Time: 20:15:30
Standard C: Yes
Line: 11

Note:

Predefined macros provide
compilation context.

__LINE__ updates dynamically.
Useful for debugging and logging.

C Preprocessor

Macro Undef

Program 10: Output:
1 #include <stdio.h> MAX: 100
2 #define MAX 100 MAX: 200
3 int main() { MAX not defined
4 printf ("MAX: %d\n", MAX); Note:
5 #undef MAX
6 #define MAX 200 #undef removes macro definition.
7 printf ("MAX: %d\n", MAX); Can redefine macro after #undef.
8 #undef MAX Useful to prevent conflicts with
O #ifdef MAX library macros.
10 printf ("MAX defined\n");
11 #else
12 printf ("MAX not defined\n");
13 #endif
14 return O;
15

C Preprocessor 11/21

Multiline Macros

Program 11: Output:
1 #include <stdio.h> Before: x=10, y=20
2 #define SWAP(a, b, type) \ After: x=20, y=10
3 do LA\ Note:
4 type temp = a; \
5 a = b; \ Backslash continues macro to next
6 b = temp; \ line. do-while (0) ensures macro
7 } while (0) acts like single statement in all
8 int main() { contexts (if, else, etc.).

9 int x = 10, y = 20;
10 printf ("Before:
11 SWAP(x, y, int);
12 printf ("After: x=%d, y=%d\n", x, y);
13 return O;

s y=hd\n", x, y);

C Preprocessor 12/21

Variadic Macros

Program 12: Output:
1 #include <stdio.h> [LOG] Value: 42
2 #define LOG(fmt, ...) \ [LOG] x=10, y=20
3 printf ("[LOG] " fmt "\n", __VA_ARGS__) program.c:9 Starting
4 #define DEBUG_PRINT (fmt, ...) \ program.c:10 Count: 5
5 printf("%s:%d " fmt "\n", \ Note:
6 __FILE__, __LINE__, ##__VA_ARGS__)
7 int main() { ... accepts variable arguments.
8 LOG("Value: %d", 42); __VA_ARGS__ expands to all args.
9 LOG("x=%d, y=%d", 10, 20); ## before __VA_ARGS__ removes
10 DEBUG_PRINT ("Starting"); comma if no arguments provided.
11 DEBUG_PRINT ("Count: %d", 5);
12 return O;
13)

C Preprocessor 13 /21

Error and Warning Directives

Program 13: Output:
1 #include <stdio.h> warning: Platform not defined
2 #define MIN_VERSION 2 Compilation successful
3 #define CURRENT_VERSION 3 Version: 3
4 #if CURRENT_VERSION < MIN_VERSION Note:
5 #error "Version too old"
6 #endif #error stops compilation with
7 #ifndef PLATFORM message. #warning shows warning
8 #wvarning "Platform not defined" but continues. Useful for enforcing
9 #endif requirements at compile time.
10 int main() {
11 printf ("Compilation successfulln");
12 printf ("Version: %d\n", CURRENT_VERSION);
13 return O;
14 }

C Preprocessor 14 /21

N WN

Pragma Directive

Program 14:
#include <stdio.h>

#pragma message("Compiling program...

#pragma pack(push, 1)
struct Packed {
char c;
int 1i;
char d;
};
#pragma pack (pop)
struct Normal {
char c;
int i;
char d;

;
int main() {
printf ("Packed: %lu\n",
sizeof (struct Packed));
printf ("Normal: %lu\n",
sizeof (struct Normal));
return O;

}

"y

Output:

Compiling program...
Packed: 6
Normal: 12

Note:

#pragma provides compiler-specific
directives. pack(1l) removes padding.
Normal struct has padding for
alignment. Compiler-dependent.

C Preprocessor

A WN =

HOWOVONOUEWNH

=

Include Guard Pattern

myheader.h:

#ifndef MYHEADER_H
#define MYHEADER_H
#define CONSTANT 42
int add(int a, int b);
#endif

Program 15:

#include <stdio.h>

#include "myheader.h"

#include "myheader.h"

int add(int a, int b) {
return a + b;

}

int main() {

printf ("Constant: %d\n", CONSTANT);

printf ("Sum: %d\n", add(5, 3));
return O;

}

Output:
Constant: 42
Sum: 8

Note:

Include guards prevent multiple
inclusion. Header included twice
but content processed once.
Standard pattern for all headers.

C Preprocessor 16 /21

Macro Debugging

Program 16: Output:
1 #include <stdio.h> DEBUG: count = 10 at line 12
2 #define DEBUG DEBUG: total = 50 at line 13
3 #ifdef DEBUG DEBUG: count + total = 60 at line 14
4 #define DBG(x) printf ("DEBUG: " #x \ Note:
. ote:
5 " = %d at line %d\n", x, __LINE__)
6 #else Conditional debug macro. Enabled
7 #define DBG(x) when DEBUG defined, disabled
8 #endif otherwise. No runtime overhead
9 int main() { when disabled.
10 int count = 10;

11 int total = 50;

12 DBG (count);

13 DBG(total);

14 DBG(count + total);
15 return O;

C Preprocessor 17 /21

Assert Macro

Program 17: Output:
1 #include <stdio.h> 10/2 = 5
2 #define ASSERT(cond) \ Assertion failed: b != 0
3 if (!(cond)) { \ at program.c:9
4 printf("Assertion failed: " #cond \ Note:
5 " at %s:%d\n", __FILE__, __LINE__); \
6 return 1; \ Custom assert macro for runtime
7 ¥ checks. Shows condition, file, and
8 int divide(int a, int b) { line on failure. Returns early to
9 ASSERT(b != 0); prevent undefined behavior.
10 return a / b;
11 3}

12 int main() {

13 printf ("10/2 = %d\n", divide (10, 2));
14 printf ("10/0 = %d\n", divide (10, 0));
15 printf ("Done\n");

16 return O;

C Preprocessor 18 /21

Platform-Specific Code

Program 18: Output (macOS):
1 #include <stdio.h> mac0S platform
2 int main() { Separator: /
3 #ifdef _WIN32 Note:
4 printf ("Windows platform\n"); "
5 const char #*separator = "\\"; Platform detection using predefined
6 #elif defined(__linux__) macros. Different code compiled for
7 printf ("Linux platform\n"); different platforms. Write once,
8 const char *separator = "/"; compile anywhere.

9 #elif defined(__APPLE__)
10 printf ("mac0S platform\n");

11 const char *separator = "/";

12 #else

13 printf ("Unknown platform\n");

14 const char *separator = "/";

15 #endif

16 printf ("Separator: %s\n", separator);
17 return O;

18 }

C Preprocessor 19/21

Compiler-Specific Features

Program 19: Output (GCC):
1 #include <stdio.h> GCC version: 11.2.0
2 int main() {

I :

3 #ifdef __GNUC__ Output (Clang)
4 printf ("GCC version: %d.%d.%d\n", Clang version: 13.0.0
5 __GNUC__, __GNUC_MINOR__, Note:
6 __GNUC_PATCHLEVEL__);
7 #endif Compiler detection using predefined
8 #ifdef __clang__ macros. Access compiler version.
9 printf("Clang version: %d.%d.%d\n", Enable compiler-specific features.
10 __clang _major__, __clang_minor__,
11 __clang_patchlevel__);
12 #endif
13 #ifdef _MSC_VER
14 printf ("MSVC version: %d\n", _MSC_VER);
15 #endif
16 return O;
17 ¥

C Preprocessor 20/21

O~NOU A WN R

Build Configuration

Program 20:

#include <stdio.h>
#ifndef BUILD_TYPE
#define BUILD_TYPE "unknown"
#endif
#ifndef OPTIMIZATION_LEVEL
#define OPTIMIZATION_LEVEL O
#endif
int main() {
printf ("Build: %s\n", BUILD_TYPE);
printf ("Optimization: %d\n",
OPTIMIZATION_LEVEL);
#if OPTIMIZATION_LEVEL >= 2
printf ("High optimization enabled\n");
#else
printf ("Low optimization\n");
#endif
return O;

}

Output:

Build: unknown
Optimization: O
Low optimization
Compile with flags:

gcc -DBUILD_TYPE=\"release\" \
-DOPTIMIZATION_LEVEL=3 prog.c

Build: release

Optimization: 3

High optimization enabled

Note:

Macros from command line with -D.

Configure build without changing
source code.

C Preprocessor

