File 1/0

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra File 1/0O

Writing to Text File

Program 1:

1 #include <stdio.h>
2 int main() {

3

[IENC T IS

FILE *fp;
fp = fopen("output.txt", "w");
if (fp == NULL) {

printf ("Error opening file\n");
return 1;

}

fprintf (fp, "Hello, World!\n");
fprintf (fp, "Number: %d\n", 42);
fprintf (fp, "Float: %.2f\n", 3.14);
fclose (fp);

printf ("File written successfully\n");
return O;

Output:
File written successfully
output.txt:

Hello, World!
Number: 42
Float: 3.14

Note:
fopen with "w" creates/overwrites
file. fprintf writes formatted

data. Always check for NULL and
close file with fclose.

Reading from Text File

Program 2:

1 #include <stdio.h>
2 int main() {

FILE *fp;

char line[100];

fp = fopen("output.txt", "r");

if (fp == NULL) {
printf ("Error opening file\n");
return 1;

}

while (fgets(line, sizeof(line), fp)) {
printf("%s", line);

}
fclose (fp);
return O;

Output:
Hello, World!
Number: 42

Float: 3.14
Note:

fopen with "r" opens for reading.
fgets reads one line at a time
including newline. Returns NULL
at end of file.

Appending to File

Program 3:

1 #include <stdio.h>
2 int main() {

FILE *fp;
fp = fopen("output.txt", "a");
if (fp == NULL) {

printf ("Error opening file\n");

return 1;

fprintf (fp, "Appended line
fprintf (fp, "Appended line
fclose (fp);

printf ("Data appended\n");
return O;

1\n");
2\n");

Output:

Data appended
output.txt:
Hello, World!
Number: 42
Float: 3.14

Appended line 1
Appended line

N)

Note:

Mode "a" appends to end of file.
Creates file if doesn’t exist.
Existing content preserved.

Character |

Program 4:

1 #include <stdio.h>
2 int main() {

FILE *fp;

char ch;

fp = fopen("chars.txt", "w");
if (fp == NULL) return 1;

fputc(’A’, fp);
fputc(’B’, fp);
fputc(’\n’, £fp);
fclose (fp);

fp = fopen("chars.txt", "r");
if (fp == NULL) return 1;
while ((ch = fgetc(fp)) !'= EOF)

printf ("%c", ch);

}
fclose (fp);
return O;

Output:
AB
Note:

fputc writes single character.
fgetc reads single character.
Returns EOF at end of file.
Character-by-character processing.

Program 5:

1 #include <stdio.h>
2 int main() {

FILE *fp;

char line[100];

fp = fopen("strings.txt", "w");
if (fp == NULL) return 1;

fputs ("First line\n", £p);
fputs("Second line\n", £p);
fclose (fp);

fp = fopen("strings.txt", "r");
if (fp == NULL) return 1;

while (fgets(line, sizeof(line), fp)) {

fputs (line, stdout);

}
fclose (fp);
return O;

Output:

First line
Second line

Note:
fputs writes string to file.
fgets reads line from file.

fputs to stdout prints to screen.
String-based I/0.

Formatted Input

Program 6:

1 #include <stdio.h>
2 int main() {

FILE *fp;

int num;

float fnum;

char str[50];

fp = fopen("data.txt", "w");
if (fp == NULL) return 1;
fprintf (fp, "100 3.14 Hello");
fclose (fp);

fp = fopen("data.txt", "r");
if (fp == NULL) return 1;
fscanf (fp, "%d %f %s", &num, &fnum, str);
printf ("Int: %d\n", num);
printf ("Float: %.2f\n", fnum);
printf ("String: %s\n", str);
fclose (fp);

return O;

Output:

Int: 100

Float: 3.14

String: Hello

Note:

fscanf reads formatted data from
file like scanf from stdin.

Parses according to format string.
Returns number of items read.

Binary File Write

Program 7:

1 #include <stdio.h>

2 struct Record {

3 int id;

4 float value;

5 3}

6 int main() {

7 FILE *fp;

8 struct Record rl1 = {101, 45.5};

9 struct Record r2 = {102, 67.8};

10 fp = fopen("data.bin", "wb");

11 if (fp == NULL) return 1;

12 fwrite(&rl, sizeof (struct Record),
13 fwrite (&r2, sizeof (struct Record),
14 fclose (fp);

15 printf ("Binary data written\n");
16 return O;

Output:
Binary data written
Note:

Mode "wb" opens binary file for
writing. fwrite writes raw bytes.
Parameters: pointer, size, count,
file pointer. Efficient for structs.

Binary File Read

Program 8:
1 #include <stdio.h>
2 struct Record {
3 int id;
4 float value;
5 3}
6 int main() {
7 FILE xfp;
8 struct Record r;
9 fp = fopen("data.bin", "rb");
10 if (fp == NULL) return 1;
11 while (fread(&r, sizeof (struct Record),
12 1, fp) == 1) {
13 printf ("ID: %d, Value: %.1f\n",
14 r.id, r.value);
15 ¥
16 fclose (fp);
17 return O;

Output:

ID: 101, Value: 45.5
ID: 102, Value: 67.8

Note:

Mode "rb" opens binary file for
reading. fread reads raw bytes.
Returns number of items read.
Returns 0 at end of file.

File Positioning - fseek

Program 9:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 int arr[] = {10, 20, 30, 40, 50};

5 int val, i;

6 fp = fopen("nums.bin", "wb");

7 furite (arr, sizeof (int), 5, fp);

8 fclose (fp);

9 fp = fopen("nums.bin", "rb");

10 fseek (fp, 2 * sizeof (int), SEEK_SET);
11 fread(&val, sizeof (int), 1, fp);

12 printf ("Value at index 2: %d\n", val);
13 fclose (fp);

14 return O;

Output:

Value at index 2: 30

Note:

fseek moves file position.
SEEK_SET: from beginning
SEEK_CUR: from current position

SEEK_END: from end
Random access to file data.

File Positioning - ftell and rewind

Program 10: Output:
1 #include <stdio.h> Position: 5
2 int main() { Position: 11
3 FILE xfp; After rewind: O
4 long pos; Note:
5 fp = fopen("test.txt", "w");
6 fprintf (fp, "Hello"); ftell returns current file position
7 pos = ftell(fp); in bytes. rewind moves position to
8 printf ("Position: %1d\n", pos); beginning. Equivalent to
9 fprintf (fp, " World"); fseek (fp, 0, SEEK_SET).

10 pos = ftell(fp);

11 printf ("Position: %1d\n", pos);

12 rewind (fp);

13 pos = ftell(fp);

14 printf ("After rewind: %1d\n", pos);
15 fclose (fp);

16 return 0;

11/21

File Size

Program 11: Output:
1 #include <stdio.h> File size: 60 bytes
2 int main() { Note:
3 FILE *fp;
4 long size; Seek to end, get position with
5 fp = fopen("output.txt", "r"); ftell to determine file size.
6 if (fp == NULL) { Then rewind to beginning.
7 printf ("Error opening file\n"); Common idiom for file size.
8 return 1;

10 fseek (fp, 0, SEEK_END);

11 size = ftell(fp);

12 rewind (fp);

13 printf ("File size: %1d bytes\n", size);
14 fclose (fp);

15 return O;

12/21

Error Checking - ferror and feof

Program 12: Output:
1 #include <stdio.h> End of file reached
2 int main() { Note:
3 FILE xfp;
4 int ch; ferror checks for errors during
5 fp = fopen("output.txt", "r"); I/0 operations. feof checks if
6 if (fp == NULL) return 1; end of file reached. Distinguish
7 while ((ch = fgetc(fp)) !'= EOF) { EOF from actual errors.
8 if (ferror(fp)) {
9 printf ("Read error occurred\n");
10 break;
11 b
12 }
13 if (feof (fp)) {
14 printf ("End of file reached\n");
15 }
16 fclose (fp);
17 return O;

File Copy

Program 13:

1 #include <stdio.h>
2 int main() {

FILE *src, *dst;
int ch;
src = fopen("output.txt", "r");
if (src == NULL) return 1;
dst = fopen("copy.txt", "w");
if (dst == NULL) {

fclose(src);

return 1;

}

while ((ch = fgetc(src)) != EOF) {
fputc(ch, dst);

}

fclose(src);

fclose(dst);

printf ("File copied successfully\n");
return O;

Output:
File copied successfully
Note:

Open source for reading, destination
for writing. Read character by
character and write to destination.
Close both files when done.

O~NOU A WN R

Line Count

Program 14:

#include <stdio.h>
int main() {
FILE *fp;
int ch, lines = 0;
fp = fopen("output.txt", "r");
if (fp == NULL) {
printf ("Error opening file\n");
return 1;

}
while ((ch = fgetc(fp)) != EOF) {
if (ch == ’\n’) {
lines++;
}

fclose (fp);
printf ("Number of lines: %d\n", lines);
return O;

Output:
Number of lines: 5
Note:

Read file character by character.
Count newline characters to
determine number of lines.

Simple text processing.

Read /Write Mode

Program 15:
1 #include <stdio.h>
2 int main() {
3 FILE xfp;

4 char datal[50];

5 fp = fopen("rw.txt", "w+");
6 if (fp == NULL) return 1;
7 fprintf (fp, "Hello");

8 rewind (fp);

9 fgets(data, sizeof (data), fp);
10 printf ("Read: %s\n", data);

11 fprintf (fp, " World");
12 fclose (fp);

13 return O;

14 }

Output:
Read: Hello
rw.txt:

Hello World
Note:

Mode "w+" allows both reading and
writing. Creates new file. "r+"
requires existing file. "a+" appends
and allows reading.

16 /21

Binary Array I/O

Program 16: Output:
1 #include <stdio.h> 12345
2 int main() { Note:
3 FILE xfp;
4 int write_arr[5] = {1, 2, 3, 4, 5}; Write entire array with single
5 int read_arr [5]; fwrite. Read entire array with
6 int 1i; single fread. Efficient for large
7 fp = fopen("array.bin", "wb"); arrays. Binary format.
8 furite (write_arr, sizeof (int), 5, fp);
9 fclose (fp);
10 fp = fopen("array.bin", "rb");
11 fread(read_arr, sizeof(int), 5, fp);

12 fclose (fp);
13 for (i = 0; i < 55 i++) {

14 printf ("%d ", read_arr[il);
15 ¥

16 printf ("\n");

17 return O;

18

17 /21

Struct Array |/O

Program 17: Output:
1 #include <stdio.h> 1 Alice 85.5
2 #include <string.h> 2 Bob 90.0
3 stfuct) Student { Note:
4 int id;
5 char name [20]; Write array of structs to binary
6 float grade; file. Read back into array. All
7 %} data preserved exactly including
8 int main() { strings and floats.

9 FILE *fp;
10 struct Student s([2] = {

11 {1, "Alice", 85.5},

12 {2, "Bob", 90.0}

13 };

14 struct Student read_s[2];

15 int 1i;

16 fp = fopen("students.bin", "wb");

17 furite(s, sizeof (struct Student), 2, fp);

18 fclose (fp);

19 fp = fopen("students.bin", "rb");

20 fread(read_s, sizeof (struct Student),
21 2, fp);

22 fclose (fp);

23 for (i = 0; i < 25 i++) {

24 printf("%d %s %.1f\n", read_s[il.id,
25 read_s[i].name, read_s[i].grade);
26 }

27 return O;

18/21

Random Access Update

Program 18: Output:
1 #include <stdio.h> 0l1d: ID=102, Val=67
2 struct Record { Updated record 1
3 ?nt id; Note:
4 int value;
5 }; Mode "r+b" opens for reading and
6 int main() { writing. Seek to specific record,
7 FILE xfp; read it, modify, seek back, write.
8 struct Record r; Random access database simulation.
9 fp = fopen("records.bin", "r+b");
10 if (fp == NULL) return 1;
11 fseek (fp, 1 * sizeof (struct Record),
12 SEEK_SET);

13 fread (&r, sizeof (struct Record), 1, fp);
14 printf ("01d: ID=%d, Val=%d\n",

15 r.id, r.value);

16 r.value = 999;

17 fseek (fp, 1 * sizeof (struct Record),

18 SEEK_SET);

19 furite (&r, sizeof (struct Record), 1, fp);
20 fclose (fp);

21 printf ("Updated record 1\n");

22 return O;

19/21

Text File Processing

Program 19: Output:
1 #include <stdio.h> File converted to uppercase
2 #include <ctype.h> .
If input.txt has:

3 int main() { fnput.tx
4 FILE *in, *out; hello world
5 int ch; upper.txt has:
6 in = fopen("input.txt", "r");
7 if (in == NULL) return 1; HELLO WORLD
8 out = fopen("upper.txt", "w"); Note:
9 if (out == NULL) { . o

: . Read from input file, transform
10 fclose(in); .

. each character, write to output.
11 return 1; "))
12 } Text processing pipeline.
13 while ((ch = fgetc(in)) != EOF) {
14 fputc (toupper (ch), out);
15 }

16 fclose (in);
17 fclose (out);

18 printf ("File converted to uppercase\n");
19 return O;
20 ¥

20 /21

CSV File Handling

Program 20:

1 #include <stdio.h>

2 int main() {

3 FILE xfp;

4 int id, age;

5 char name [30];

6 float salary;

7 fp = fopen("data.csv", "w"

8 fprintf (fp, "ID,Name,bAge,Salary\n");
9 fprintf (fp, "1,Alice,25,50000.5\n");
10 fprintf (fp, "2,Bob,30,60000.0\n");
11 fclose (fp);

12 fp = fopen("data.csv", "r");

13 fscanf (fp, "ID,Name,Age,Salary\n");

14 while (fscanf (fp, "%d,%[",]1,%d,%f\n",

15 %&id, name, &age, &salary) 4) A

16 printf ("ID:%d Name:%s Age:%d Sal:%.1f\n",
17 id, name, age, salary);

18 ¥

19 fclose (fp);

20 return O;

Output:

ID:1 Name:Alice Age:25 Sal:50000.5
ID:2 Name:Bob Age:30 Sal:60000.0

Note:

CSV (Comma-Separated Values) format.
Write with fprintf using commas.
Read with fscanf using format

%[",] to read until comma.

