
File I/O

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra File I/O 1 / 21



Writing to Text File

Program 1:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 fp = fopen("output.txt", "w");

5 if (fp == NULL) {

6 printf("Error opening file\n");

7 return 1;

8 }

9 fprintf(fp , "Hello , World!\n");

10 fprintf(fp, "Number: %d\n", 42);

11 fprintf(fp, "Float: %.2f\n", 3.14);

12 fclose(fp);

13 printf("File written successfully\n");

14 return 0;

15 }

Output:

File written successfully

output.txt:

Hello , World!

Number: 42

Float: 3.14

Note:

fopen with "w" creates/overwrites

file. fprintf writes formatted

data. Always check for NULL and

close file with fclose.

Prof. Jyotiprakash Mishra File I/O 2 / 21



Reading from Text File

Program 2:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 char line [100];

5 fp = fopen("output.txt", "r");

6 if (fp == NULL) {

7 printf("Error opening file\n");

8 return 1;

9 }

10 while (fgets(line , sizeof(line), fp)) {

11 printf("%s", line);

12 }

13 fclose(fp);

14 return 0;

15 }

Output:

Hello , World!

Number: 42

Float: 3.14

Note:

fopen with "r" opens for reading.

fgets reads one line at a time

including newline. Returns NULL

at end of file.

Prof. Jyotiprakash Mishra File I/O 3 / 21



Appending to File

Program 3:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 fp = fopen("output.txt", "a");

5 if (fp == NULL) {

6 printf("Error opening file\n");

7 return 1;

8 }

9 fprintf(fp , "Appended line 1\n");

10 fprintf(fp, "Appended line 2\n");

11 fclose(fp);

12 printf("Data appended\n");

13 return 0;

14 }

Output:

Data appended

output.txt:

Hello , World!

Number: 42

Float: 3.14

Appended line 1

Appended line 2

Note:

Mode "a" appends to end of file.

Creates file if doesn ’t exist.

Existing content preserved.

Prof. Jyotiprakash Mishra File I/O 4 / 21



Character I/O

Program 4:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 char ch;

5 fp = fopen("chars.txt", "w");

6 if (fp == NULL) return 1;

7 fputc(’A’, fp);

8 fputc(’B’, fp);

9 fputc(’\n’, fp);

10 fclose(fp);

11 fp = fopen("chars.txt", "r");

12 if (fp == NULL) return 1;

13 while ((ch = fgetc(fp)) != EOF) {

14 printf("%c", ch);

15 }

16 fclose(fp);

17 return 0;

18 }

Output:

AB

Note:

fputc writes single character.

fgetc reads single character.

Returns EOF at end of file.

Character -by -character processing.

Prof. Jyotiprakash Mishra File I/O 5 / 21



String I/O

Program 5:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 char line [100];

5 fp = fopen("strings.txt", "w");

6 if (fp == NULL) return 1;

7 fputs("First line\n", fp);

8 fputs("Second line\n", fp);

9 fclose(fp);

10 fp = fopen("strings.txt", "r");

11 if (fp == NULL) return 1;

12 while (fgets(line , sizeof(line), fp)) {

13 fputs(line , stdout );

14 }

15 fclose(fp);

16 return 0;

17 }

Output:

First line

Second line

Note:

fputs writes string to file.

fgets reads line from file.

fputs to stdout prints to screen.

String -based I/O.

Prof. Jyotiprakash Mishra File I/O 6 / 21



Formatted Input

Program 6:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 int num;

5 float fnum;

6 char str [50];

7 fp = fopen("data.txt", "w");

8 if (fp == NULL) return 1;

9 fprintf(fp , "100 3.14 Hello");

10 fclose(fp);

11 fp = fopen("data.txt", "r");

12 if (fp == NULL) return 1;

13 fscanf(fp, "%d %f %s", &num , &fnum , str);

14 printf("Int: %d\n", num);

15 printf("Float: %.2f\n", fnum);

16 printf("String: %s\n", str);

17 fclose(fp);

18 return 0;

19 }

Output:

Int: 100

Float: 3.14

String: Hello

Note:

fscanf reads formatted data from

file like scanf from stdin.

Parses according to format string.

Returns number of items read.

Prof. Jyotiprakash Mishra File I/O 7 / 21



Binary File Write

Program 7:

1 #include <stdio.h>

2 struct Record {

3 int id;

4 float value;

5 };

6 int main() {

7 FILE *fp;

8 struct Record r1 = {101, 45.5};

9 struct Record r2 = {102, 67.8};

10 fp = fopen("data.bin", "wb");

11 if (fp == NULL) return 1;

12 fwrite (&r1, sizeof(struct Record), 1, fp);

13 fwrite (&r2, sizeof(struct Record), 1, fp);

14 fclose(fp);

15 printf("Binary data written\n");

16 return 0;

17 }

Output:

Binary data written

Note:

Mode "wb" opens binary file for

writing. fwrite writes raw bytes.

Parameters: pointer , size , count ,

file pointer. Efficient for structs.

Prof. Jyotiprakash Mishra File I/O 8 / 21



Binary File Read

Program 8:

1 #include <stdio.h>

2 struct Record {

3 int id;

4 float value;

5 };

6 int main() {

7 FILE *fp;

8 struct Record r;

9 fp = fopen("data.bin", "rb");

10 if (fp == NULL) return 1;

11 while (fread(&r, sizeof(struct Record),

12 1, fp) == 1) {

13 printf("ID: %d, Value: %.1f\n",

14 r.id, r.value);

15 }

16 fclose(fp);

17 return 0;

18 }

Output:

ID: 101, Value: 45.5

ID: 102, Value: 67.8

Note:

Mode "rb" opens binary file for

reading. fread reads raw bytes.

Returns number of items read.

Returns 0 at end of file.

Prof. Jyotiprakash Mishra File I/O 9 / 21



File Positioning - fseek

Program 9:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 int arr[] = {10, 20, 30, 40, 50};

5 int val , i;

6 fp = fopen("nums.bin", "wb");

7 fwrite(arr , sizeof(int), 5, fp);

8 fclose(fp);

9 fp = fopen("nums.bin", "rb");

10 fseek(fp, 2 * sizeof(int), SEEK_SET );

11 fread(&val , sizeof(int), 1, fp);

12 printf("Value at index 2: %d\n", val);

13 fclose(fp);

14 return 0;

15 }

Output:

Value at index 2: 30

Note:

fseek moves file position.

SEEK_SET: from beginning

SEEK_CUR: from current position

SEEK_END: from end

Random access to file data.

Prof. Jyotiprakash Mishra File I/O 10 / 21



File Positioning - ftell and rewind

Program 10:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 long pos;

5 fp = fopen("test.txt", "w");

6 fprintf(fp , "Hello");

7 pos = ftell(fp);

8 printf("Position: %ld\n", pos);

9 fprintf(fp , " World");

10 pos = ftell(fp);

11 printf("Position: %ld\n", pos);

12 rewind(fp);

13 pos = ftell(fp);

14 printf("After rewind: %ld\n", pos);

15 fclose(fp);

16 return 0;

17 }

Output:

Position: 5

Position: 11

After rewind: 0

Note:

ftell returns current file position

in bytes. rewind moves position to

beginning. Equivalent to

fseek(fp, 0, SEEK_SET ).

Prof. Jyotiprakash Mishra File I/O 11 / 21



File Size

Program 11:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 long size;

5 fp = fopen("output.txt", "r");

6 if (fp == NULL) {

7 printf("Error opening file\n");

8 return 1;

9 }

10 fseek(fp, 0, SEEK_END );

11 size = ftell(fp);

12 rewind(fp);

13 printf("File size: %ld bytes\n", size);

14 fclose(fp);

15 return 0;

16 }

Output:

File size: 60 bytes

Note:

Seek to end , get position with

ftell to determine file size.

Then rewind to beginning.

Common idiom for file size.

Prof. Jyotiprakash Mishra File I/O 12 / 21



Error Checking - ferror and feof

Program 12:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 int ch;

5 fp = fopen("output.txt", "r");

6 if (fp == NULL) return 1;

7 while ((ch = fgetc(fp)) != EOF) {

8 if (ferror(fp)) {

9 printf("Read error occurred\n");

10 break;

11 }

12 }

13 if (feof(fp)) {

14 printf("End of file reached\n");

15 }

16 fclose(fp);

17 return 0;

18 }

Output:

End of file reached

Note:

ferror checks for errors during

I/O operations. feof checks if

end of file reached. Distinguish

EOF from actual errors.

Prof. Jyotiprakash Mishra File I/O 13 / 21



File Copy

Program 13:

1 #include <stdio.h>

2 int main() {

3 FILE *src , *dst;

4 int ch;

5 src = fopen("output.txt", "r");

6 if (src == NULL) return 1;

7 dst = fopen("copy.txt", "w");

8 if (dst == NULL) {

9 fclose(src);

10 return 1;

11 }

12 while ((ch = fgetc(src)) != EOF) {

13 fputc(ch, dst);

14 }

15 fclose(src);

16 fclose(dst);

17 printf("File copied successfully\n");

18 return 0;

19 }

Output:

File copied successfully

Note:

Open source for reading , destination

for writing. Read character by

character and write to destination.

Close both files when done.

Prof. Jyotiprakash Mishra File I/O 14 / 21



Line Count

Program 14:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 int ch, lines = 0;

5 fp = fopen("output.txt", "r");

6 if (fp == NULL) {

7 printf("Error opening file\n");

8 return 1;

9 }

10 while ((ch = fgetc(fp)) != EOF) {

11 if (ch == ’\n’) {

12 lines ++;

13 }

14 }

15 fclose(fp);

16 printf("Number of lines: %d\n", lines);

17 return 0;

18 }

Output:

Number of lines: 5

Note:

Read file character by character.

Count newline characters to

determine number of lines.

Simple text processing.

Prof. Jyotiprakash Mishra File I/O 15 / 21



Read/Write Mode

Program 15:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 char data [50];

5 fp = fopen("rw.txt", "w+");

6 if (fp == NULL) return 1;

7 fprintf(fp , "Hello");

8 rewind(fp);

9 fgets(data , sizeof(data), fp);

10 printf("Read: %s\n", data);

11 fprintf(fp, " World");

12 fclose(fp);

13 return 0;

14 }

Output:

Read: Hello

rw.txt:

Hello World

Note:

Mode "w+" allows both reading and

writing. Creates new file. "r+"

requires existing file. "a+" appends

and allows reading.

Prof. Jyotiprakash Mishra File I/O 16 / 21



Binary Array I/O

Program 16:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 int write_arr [5] = {1, 2, 3, 4, 5};

5 int read_arr [5];

6 int i;

7 fp = fopen("array.bin", "wb");

8 fwrite(write_arr , sizeof(int), 5, fp);

9 fclose(fp);

10 fp = fopen("array.bin", "rb");

11 fread(read_arr , sizeof(int), 5, fp);

12 fclose(fp);

13 for (i = 0; i < 5; i++) {

14 printf("%d ", read_arr[i]);

15 }

16 printf("\n");

17 return 0;

18 }

Output:

1 2 3 4 5

Note:

Write entire array with single

fwrite. Read entire array with

single fread. Efficient for large

arrays. Binary format.

Prof. Jyotiprakash Mishra File I/O 17 / 21



Struct Array I/O

Program 17:

1 #include <stdio.h>

2 #include <string.h>

3 struct Student {

4 int id;

5 char name [20];

6 float grade;

7 };

8 int main() {

9 FILE *fp;

10 struct Student s[2] = {

11 {1, "Alice", 85.5},

12 {2, "Bob", 90.0}

13 };

14 struct Student read_s [2];

15 int i;

16 fp = fopen("students.bin", "wb");

17 fwrite(s, sizeof(struct Student), 2, fp);

18 fclose(fp);

19 fp = fopen("students.bin", "rb");

20 fread(read_s , sizeof(struct Student),

21 2, fp);

22 fclose(fp);

23 for (i = 0; i < 2; i++) {

24 printf("%d %s %.1f\n", read_s[i].id ,

25 read_s[i].name , read_s[i]. grade);

26 }

27 return 0;

28 }

Output:

1 Alice 85.5

2 Bob 90.0

Note:

Write array of structs to binary

file. Read back into array. All

data preserved exactly including

strings and floats.

Prof. Jyotiprakash Mishra File I/O 18 / 21



Random Access Update

Program 18:

1 #include <stdio.h>

2 struct Record {

3 int id;

4 int value;

5 };

6 int main() {

7 FILE *fp;

8 struct Record r;

9 fp = fopen("records.bin", "r+b");

10 if (fp == NULL) return 1;

11 fseek(fp, 1 * sizeof(struct Record),

12 SEEK_SET );

13 fread(&r, sizeof(struct Record), 1, fp);

14 printf("Old: ID=%d, Val=%d\n",

15 r.id, r.value);

16 r.value = 999;

17 fseek(fp, 1 * sizeof(struct Record),

18 SEEK_SET );

19 fwrite (&r, sizeof(struct Record), 1, fp);

20 fclose(fp);

21 printf("Updated record 1\n");

22 return 0;

23 }

Output:

Old: ID=102, Val=67

Updated record 1

Note:

Mode "r+b" opens for reading and

writing. Seek to specific record ,

read it, modify , seek back , write.

Random access database simulation.

Prof. Jyotiprakash Mishra File I/O 19 / 21



Text File Processing

Program 19:

1 #include <stdio.h>

2 #include <ctype.h>

3 int main() {

4 FILE *in , *out;

5 int ch;

6 in = fopen("input.txt", "r");

7 if (in == NULL) return 1;

8 out = fopen("upper.txt", "w");

9 if (out == NULL) {

10 fclose(in);

11 return 1;

12 }

13 while ((ch = fgetc(in)) != EOF) {

14 fputc(toupper(ch), out);

15 }

16 fclose(in);

17 fclose(out);

18 printf("File converted to uppercase\n");

19 return 0;

20 }

Output:

File converted to uppercase

If input.txt has:

hello world

upper.txt has:

HELLO WORLD

Note:

Read from input file , transform

each character , write to output.

Text processing pipeline.

Prof. Jyotiprakash Mishra File I/O 20 / 21



CSV File Handling

Program 20:

1 #include <stdio.h>

2 int main() {

3 FILE *fp;

4 int id, age;

5 char name [30];

6 float salary;

7 fp = fopen("data.csv", "w");

8 fprintf(fp , "ID,Name ,Age ,Salary\n");

9 fprintf(fp , "1,Alice ,25 ,50000.5\n");

10 fprintf(fp, "2,Bob ,30 ,60000.0\n");

11 fclose(fp);

12 fp = fopen("data.csv", "r");

13 fscanf(fp, "ID ,Name ,Age ,Salary\n");

14 while (fscanf(fp, "%d,%[^,],%d,%f\n",

15 &id, name , &age , &salary) == 4) {

16 printf("ID:%d Name:%s Age:%d Sal :%.1f\n",

17 id , name , age , salary );

18 }

19 fclose(fp);

20 return 0;

21 }

Output:

ID:1 Name:Alice Age :25 Sal :50000.5

ID:2 Name:Bob Age:30 Sal :60000.0

Note:

CSV (Comma -Separated Values) format.

Write with fprintf using commas.

Read with fscanf using format

%[^,] to read until comma.

Prof. Jyotiprakash Mishra File I/O 21 / 21


