C Programming: Deck 2

Data Types & Variables

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming: Deck 2

Topics Covered

@ Introduction to Data Types
© Fundamental Data Types
© Size Modifiers

@ Signed vs Unsigned

© The sizeof() Operator

@ Variables

@ Constants

© Program Examples

© Format Specifiers Reference
@ Key Concepts Summary
@ Practice Exercises

Prof. Jyotiprakash Mishra C Programming: Deck 2

Why Data Types?

Data types define what kind of data a variable can hold
Determine how much memory is allocated

Specify what operations can be performed

Help compiler detect errors

C is a statically-typed language - type must be declared

Prof. Jyotiprakash Mishra C Programming: Deck 2

Categories of Data Types in C

© Basic/Primitive Types

e int, char, float, double
© Derived Types

o Arrays, Pointers, Structures, Unions
© Enumeration Type

@ enum
© Void Type

e void

This deck focuses on basic/primitive types

Prof. Jyotiprakash Mishra C Programming: Deck 2

Integer Type: int

@ Stores whole numbers (no decimal point)

e Can be positive, negative, or zero

e Typically 4 bytes (32 bits) on most systems

@ Range: -2,147,483,648 to 2,147,483,647 (on 32-bit systems)

@ Default size depends on system architecture

Examples: -42, 0, 100, 2024

Prof. Jyotiprakash Mishra C Programming: Deck 2 5/59

Character Type: char

@ Stores a single character

@ Typically 1 byte (8 bits)

@ Enclosed in single quotes

@ Internally stored as integer (ASCII value)

@ Range: -128 to 127 (signed) or 0 to 255 (unsigned)

Examples: 'A’, 'z', '5', "\n', '¥’

Prof. Jyotiprakash Mishra C Programming: Deck 2

Floating Point Type: float

@ Stores decimal numbers (real numbers)

@ Single precision floating-point

e Typically 4 bytes (32 bits)

@ Precision: approximately 6-7 decimal digits

@ Can represent very large or very small numbers

Examples: 3.14, -0.001, 2.5, 1.0

Prof. Jyotiprakash Mishra C Programming: Deck 2

Double Precision Type: double

@ Stores decimal numbers with higher precision
@ Double precision floating-point

o Typically 8 bytes (64 bits)

@ Precision: approximately 15-16 decimal digits
@ More accurate than float

°

Default type for decimal literals in C

Examples: 3.141592653589793, -0.00000001, 1el0

Prof. Jyotiprakash Mishra C Programming: Deck 2

Basic Data Types Summary

Type Size | Format | Use

int 4 bytes hd Whole numbers
char 1 byte he Single character
float | 4 bytes Wt Decimals (low precision)

double | 8 bytes | %1f Decimals (high precision)

Note: Sizes may vary by system; these are typical values

Prof. Jyotiprakash Mishra C Programming: Deck 2 9/59

What are Size Modifiers?

@ Modify the size and range of basic data types
@ Applied mainly to int type
@ Can increase or decrease storage size

@ Affect the range of values that can be stored

Modifiers:
@ short
@ long

@ long long

Prof. Jyotiprakash Mishra C Programming: Deck 2

@ Typically 2 bytes (16 bits)
@ Range: -32,768 to 32,767
@ Uses less memory than int

@ Can write as short int or just short

Declaration:
@ short x;

@ short int y;

Prof. Jyotiprakash Mishra C Programming: Deck 2

@ Typically 4 or 8 bytes (system dependent)

@ On 32-bit: 4 bytes, same as int

@ On 64-bit: 8 bytes, larger range

e Range: -2,147,483,648 to 2,147,483,647 (32-bit)

@ Can write as long int or just long

Declaration:
@ long x;

@ long int y;

Prof. Jyotiprakash Mishra C Programming: Deck 2

long long int

@ At least 8 bytes (64 bits)

@ Range: -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

@ For very large numbers
@ Introduced in C99 standard

@ Can write as long long int or long long

Declaration:
@ long long x;

@ long long int y;

Prof. Jyotiprakash Mishra C Programming: Deck 2

long double

Extended precision floating-point
Typically 10, 12, or 16 bytes (system dependent)
Greater precision than double

Precision: approximately 18-19+ decimal digits

® 6 66 o o

For high-precision scientific calculations

Declaration:
@ long double pi = 3.14159265358979323846L;

Prof. Jyotiprakash Mishra C Programming: Deck 2 14 /59

Understanding Signed and Unsigned

Signed:
@ Can store both positive and negative values
@ Default for integer types
@ One bit used for sign (+ or -)

Unsigned:
@ Can store only non-negative values (0 and positive)
@ All bits used for magnitude
@ Doubles the positive range

Prof. Jyotiprakash Mishra C Programming: Deck 2

Signed vs Unsigned: Range Comparison

Type Range

signed char -128 to 127
unsigned char 0 to 255

signed short -32,768 to 32,767
unsigned short 0 to 65,535

signed int
unsigned int

-2,147,483,648 to 2,147,483,647
0 to 4,294,967,295

signed long long
unsigned long long

—203 10203 _1
0to2%—1

Prof. Jyotiprakash Mishra

C Programming: Deck 2

16 /59

When to Use Unsigned?

Use unsigned when:
@ Value will never be negative (e.g., count, size, age)
@ Need larger positive range

@ Working with bit operations

Declaration:

1|unsigned int age = 25;
>lunsigned long population = 8000000000UL;
s|unsigned char byte = 255;

Prof. Jyotiprakash Mishra C Programming: Deck 2

sizeof() Operator

@ Returns the size of a type or variable in bytes
e Compile-time operator (evaluated at compile time)
@ Returns value of type size_t (unsigned integer)

@ Syntax: sizeof (type) or sizeof variable

Examples:

1|sizeof (int)

>|sizeof (char)

3| sizeof (double)

s |sizeof (x) // where = s a wvariable

Prof. Jyotiprakash Mishra C Programming: Deck 2

What is a Variable?

Named storage location in memory
Holds data that can change during program execution

Must be declared before use

® 6 o o

Has a type, name, and value

Variable Declaration Syntax:

datatype variable_name;

Prof. Jyotiprakash Mishra C Programming: Deck 2

Variable Declaration

Simple Declaration:

1|int age;

> |char grade;
s|float price;
4+ |double pij;

Multiple Variables of Same Type:

1|int x, y, zZ;
>|float a, b, c;

Prof. Jyotiprakash Mishra C Programming: Deck 2

Variable Initialization

Declaration with Initialization:

1| int age = 25;

> |char grade = ’A’;
s|float price = 99.99;
4+ |double pi = 3.14159;

Multiple Variables with Initialization:

1|/int x = 10, y = 20, z = 30;
>|float a = 1.5, b = 2.5;

Prof. Jyotiprakash Mishra C Programming: Deck 2

Variable Naming Rules

Valid Names:
@ Must start with letter (a-z, A-Z) or underscore (_)
e Can contain letters, digits (0-9), and underscores
o Case-sensitive (age # Age)
°

Cannot use C keywords (int, if, while, etc.)

Good Examples: age, student _name, marksi1, _temp
Bad Examples: 2age, student-name, int, my$money

Prof. Jyotiprakash Mishra C Programming: Deck 2 22 /59

What are Constants?

@ Fixed values that cannot be changed during program execution
@ Improve code readability
@ Make code easier to maintain

@ Two ways to define constants in C:

@ Using const keyword
@ Using #define preprocessor directive

Prof. Jyotiprakash Mishra C Programming: Deck 2

Constants using const Keyword

Syntax:

1|const datatype variable_name = value;

Examples:

1| const int MAX_SIZE = 100;
>|const float PI = 3.14159;
3|const char GRADE = °’A’;

@ Value cannot be modified later
@ Attempting to modify causes compilation error
@ Type-safe (compiler checks type)

Prof. Jyotiprakash Mishra C Programming: Deck 2

Constants using #define

Syntax:

1 |#define IDENTIFIER value

Examples:

1 |#define MAX_SIZE 100
> |#define PI 3.14159
s |#define NEWLINE ’\n’

@ Preprocessor replaces all occurrences before compilation
@ No semicolon at the end

@ No type checking

@ Convention: use UPPERCASE names

Prof. Jyotiprakash Mishra C Programming: Deck 2

const vs #define

Feature const #define

Type checking Yes No

Memory allocation Uses memory Text replacement
Scope Has scope Global
Debugging Can debug Cannot debug
Usage Modern C Traditional C

Prof. Jyotiprakash Mishra C Programming: Deck 2 26 /59

Program 1: Basic Variable Usage

1|#include <stdio.h>

2

s|int main() {

4 int age = 25;

5 char grade = ’A’;

6 float height = 5.9;

7 double pi = 3.14159;

8

9 printf ("Age: %d\n", age);

0 printf ("Grade: %c\n", grade);
1 printf ("Height: %f\n", height);
2 printf ("Pi: %1f\n", pi);

3

4 return O;

5|}

Prof. Jyotiprakash Mishra C Programming: Deck 2 27 /59

Program 1: Output

Age: 25
Grade: A

Height: 5.900000
Pi: 3.141590

Observations:
@ 7d for integers
@ c for characters
@ £ for float (shows 6 decimal places by default)
@ %1f for double

Prof. Jyotiprakash Mishra C Programming: Deck 2

Program 2: sizeof() Operator

#include <stdio.h>

-

int main() {

4 printf ("Size of char: %lu byte(s)\n",
5 sizeof (char)) ;

printf ("Size of int: %lu byte(s)\n",

w

(o))

7 sizeof (int)) ;

8 printf ("Size of float: %lu byte(s)\n",

9 sizeof (float)) ;

0 printf ("Size of double: %lu byte(s)\n",

1 sizeof (double));

2 printf ("Size of long long: %lu byte(s)\n",
3 sizeof (long long));

4

5 return O0;

6|}

Prof. Jyotiprakash Mishra C Programming: Deck 2 29 /59

Program 2: Output

1 byte(s)
4 byte(s)
4 byte(s)

8 byte(s)
8 byte(s)

Notes:
@ J1u used for size t (unsigned long)
@ Output may vary on different systems
@ Shows typical values on 64-bit systems

Prof. Jyotiprakash Mishra C Programming: Deck 2 30/59

Program 3: All Integer Types Sizes

#include <stdio.h>

-

int main() {

4 printf ("short: %lu bytes\n", sizeof (short));
5 printf ("int: %lu bytes\n", sizeof (int));
printf ("long: %lu bytes\n", sizeof (long));

w

7 printf ("long long: %lu bytes\n",

8 sizeof (long long));

9

0 printf ("\nSigned vs Unsigned:\n");
printf ("signed int: %lu bytes\n",

2 sizeof (signed int));

3 printf ("unsigned int: %lu bytes\n",

4 sizeof (unsigned int));

5

6 return O0;

7}

Prof. Jyotiprakash Mishra C Programming: Deck 2 31/59

Program 3: Output

2 bytes
4 bytes
8 bytes
8 bytes

Signed vs Unsigned:

4 bytes
4 bytes

Observation:
@ Signed and unsigned have same size

@ Only the range differs, not the memory

Prof. Jyotiprakash Mishra C Programming: Deck 2 32/59

Program 4: Signed vs Unsigned Range

#include <stdio.h>

-

int main() {

w

4 signed char sc = -128;

5 unsigned char uc = 255;

7 printf ("Signed char: %d\n", sc);

8 printf ("Unsigned char: %u\n", uc);
9

0 signed int si = -2147483648;

unsigned int ui = 4294967295U;

3 printf ("Signed int: %d\n", si);

4 printf ("Unsigned int: %u\n", ui);
5

6 return O0;

7|}

Prof. Jyotiprakash Mishra C Programming: Deck 2 33/59

Program 4: Output

Signed : —-128
Unsigned : 255

Signed : -2147483648
Unsigned : 4294967295

Notes:
@ %u for unsigned integers
o U suffix for unsigned literals

@ Demonstrates minimum and maximum values

Prof. Jyotiprakash Mishra C Programming: Deck 2 34 /59

Program 5: Integer Overflow

#include <stdio.h>

-

int main() {

w

4 signed char x = 127; // Maz wvalue
5 printf ("Before overflow: %d\n", x);
7 X = x + 1; // Overflouw
8 printf ("After overflow: %d\n", x);

9

0 unsigned char y = 255; // Maz wvalue

printf ("\nBefore overflow: %u\n", y);

3 y =y + 1; // Wraps to 0
4 printf ("After overflow: %u\n", y);

5

6 return O;

7|}

Prof. Jyotiprakash Mishra C Programming: Deck 2 35/59

Program 5: Output

Before overflow: 127
After overflow: -128

Before overflow: 255

After overflow: O

Observations:
@ Signed overflow wraps from max to min
@ Unsigned overflow wraps from max to 0

@ This is undefined behavior for signed types

Prof. Jyotiprakash Mishra C Programming: Deck 2 36 /59

Program 6: Integer Underflow

#include <stdio.h>

-

int main() {

w

4 signed char x = -128; // Min value
5 printf ("Before underflow: %d\n", x);
7 x = x - 1; // Underflow
8 printf ("After underflow: %d\n", x);
9

0 unsigned char y = 0; // Min value

printf ("\nBefore underflow: %u\n", y);

3 y =y - 1; // Wraps to 255
4 printf ("After underflow: %u\n", y);

5

6 return O;

7|}

Prof. Jyotiprakash Mishra C Programming: Deck 2 37/59

Program 6: Output

Before underflow: -128
After underflow: 127

Before underflow: O
After underflow: 255

Observations:
@ Signed underflow wraps from min to max
@ Unsigned underflow wraps from 0 to max

@ Demonstrates circular nature of integer storage

Prof. Jyotiprakash Mishra C Programming: Deck 2 38/59

Program 7: Float Precision

#include <stdio.h>

-

int main() {

w

4 float £ = 3.14159265358979323846;
5 double d = 3.14159265358979323846;
long double 1d = 3.14159265358979323846L;
7
8 printf ("float: %.20f\n", £);
9 printf ("double: %.201f\n", d);
0 printf ("long double: %.20Lf\n", 1d);
1
return O;
3|}

Note: .20 specifies 20 decimal places

Prof. Jyotiprakash Mishra C Programming: Deck 2 39/59

Program 7: Output

3.14159274101257324219
3.14159265358979311600

3.14159265358979323851

Observations:
@ float loses precision after 6-7 digits
@ double maintains precision up to 15-16 digits
@ long double has highest precision

@ Notice the rounding errors due to binary representation

Prof. Jyotiprakash Mishra C Programming: Deck 2

Program 8: Character and ASCII

1 |#include <stdio.h>

3|int main() {

4 char chl = ’A’;
5 char ch2 = 65; // ASCII wvalue of ‘A’
char ch3 = ’a’;
7
8 printf ("Character: Y%c, ASCII: %d\n", chl, chl);
9 printf ("Character: Y%c, ASCII: %d\n", ch2, ch2);
0 printf ("Character: Y%c, ASCII: %d\n", ch3, ch3);
2 printf ("\nDifference: %d\n", ch3 - chl);
3
4 return O0;
5|}

Prof. Jyotiprakash Mishra C Programming: Deck 2 41/59

Program 8: Output

Character: A, ASCII: 65
Character: A, ASCII: 65

Character: a, ASCII: 97
Difference: 32

Observations:
o Characters are stored as integers (ASCII values)
@ Jc displays character, %d displays ASCII
e 'A'=065"a =97

o Difference between lowercase and uppercase is 32

Prof. Jyotiprakash Mishra C Programming: Deck 2 42 /59

Program 9: Constants with const

1 |#include <stdio.h>

3|int main() {

4 const int MAX_STUDENTS = 50;

5 const float PI = 3.14159;

7 printf ("Maximum students: %d\n", MAX_STUDENTS) ;
8 printf ("Value of PI: %f\n", PI);

9

0 // MAX_STUDENTS = 100; // ERROR! Cannot modtfy
2 printf ("These values cannot be changed!\n");

3

4 return O0;

5|}

Prof. Jyotiprakash Mishra C Programming: Deck 2 43 /59

Program 9: Output

Maximum students: 50
Value of PI: 3.141590

These values cannot be changed!

Notes:
@ const prevents modification
@ Compiler error if you try to change the value

@ Good practice for values that shouldn’'t change

Prof. Jyotiprakash Mishra C Programming: Deck 2 44 /59

Program 10: Constants with #define

1 |#include <stdio.h>

3 |#define MAX_SIZE 100
4 |#define PI 3.14159
5 |#define GREETING "Hello, World!"

(o))

int main() {

7

8 printf ("Max size: %d\n", MAX_SIZE);

9 printf ("PI value: %f\n", PI);

0 printf ("%s\n", GREETING);

1

2 int array_size = MAX_SIZE;

3 printf ("Array size: %d\n", array_size);
4

5 return O;

6|}

Prof. Jyotiprakash Mishra C Programming: Deck 2 45 /59

Program 10: Output

Max size: 100
PI value: 3.141590

Hello, World!
Array size: 100

Notes:
o #define does text replacement
@ No type checking
@ Can define any constant (number, string, expression)

@ Processed by preprocessor before compilation

Prof. Jyotiprakash Mishra C Programming: Deck 2 46 /59

Program 11: Variable Scope Example

1 |#include <stdio.h>

2

3|int global_var = 100; // Global wartable

4

5 |int main() {

6 int local_var = 50; // Local wariable

7

8 printf ("Global variable: %d\n", global_var);

9 printf ("Local variable: %d\n", local_var);

0

1 {

2 int block_var = 25; // Block scope

3 printf ("Block variable: %d\n", block_var);
4 printf ("Can access local: %d\n", local_var);
5 }

6 // block_var not accessible here

7

8 return O;

Prof. Jyotiprakash Mishra C Programming: Deck 2 47 /59

Program 11: Output

Global wvariable: 100
Local variable: 50
Block variable: 25

Can access local: 50

Observations:
Global variables declared outside all functions

@ Local variables declared inside functions
@ Block variables exist only within {} braces
°

Inner scopes can access outer variables

Prof. Jyotiprakash Mishra C Programming: Deck 2 48 /59

Program 12: Formatting Output

#include <stdio.h>

-

int main() {

w

4 int x = 5;

5 float y = 3.14159;

6

7 printf ("Default int: %d\n", x);

8 printf ("Width 5: %5d\n", x);

9 printf ("Zero-padded: %05d\n", x);

0

1 printf ("\nDefault float: %f\n", y);
2 printf ("2 decimals: %.2f\n", y);

3 printf ("Width 10, 3 decimals: %10.3f\n", y);
4

5 return O;

6|

Prof. Jyotiprakash Mishra C Programming: Deck 2 49 /59

Program 12: Output

Default : 5
Width 5: 5
Zero-padded: 00005

Default : 3.141590
2 decimals: 3.14
Width 10, 3 decimals:

Format Specifiers:
@ 75d - minimum width of 5
@ 705d - zero padding
@ %.2f - 2 decimal places
@ %10.3f - width 10, 3 decimals

Prof. Jyotiprakash Mishra C Programming: Deck 2 50 /59

Common Format Specifiers

Specifier | Type

%d or %i | int (signed)

hu unsigned int

he char

ht float

yARS double

WLE long double

%1ld long int

%11d long long int

%lu unsigned long

%11lu unsigned long long

hx hexadecimal (lowercase)
X hexadecimal (uppercase)
o octal

Prof. Jyotiprakash Mishra C Programming: Deck 2

Important Points to Remember

@ Every variable must be declared with a type
© Type determines size, range, and operations
© sizeof () returns size in bytes

@ Signed types can be negative, unsigned cannot
© Constants prevent accidental value changes

© Use appropriate type for your data needs

@ Be careful with overflow and underflow

© float has less precision than double

Prof. Jyotiprakash Mishra C Programming: Deck 2

Common Mistakes

@ Using uninitialized variables

o May contain garbage values
o Always initialize before use

@ Integer overflow/underflow
o Check ranges before operations
© Using %f for double in scanf ()

o Use %1f for double in scanf ()
o T works for printf () due to promotion

© Comparing floats with ==
o Use tolerance due to precision issues

Prof. Jyotiprakash Mishra C Programming: Deck 2

© Declare variables of all basic types and print their sizes
© Write a program to swap two integer variables

© Calculate the area of a circle using const for Pl

© Demonstrate overflow with different integer types

© Print ASCII values of characters 'A’ through 'Z’

© Create a program showing precision difference between float and
double

Prof. Jyotiprakash Mishra C Programming: Deck 2

Sample Solution: Swap Two Numbers

1 |#include <stdio.h>

3|int main() {

4 int a = 10, b = 20, temp;

5

6 printf ("Before swap: a = %d, b = %d\n", a, b);
7

8 temp = a;

9 a = b;

0 b = temp;

2 printf ("After swap: a = %d, b = %d\n", a, b);
3

4 return O0;

5|}

Prof. Jyotiprakash Mishra C Programming: Deck 2 55 /59

Sample Solution: Swap Output

Before swap:

After swap:

Prof. Jyotiprakash Mishra C Programming: Deck 2 56 /59

Sample Solution: Circle Area

1 |#include <stdio.h>

2

3 |#define PI 3.14159

4

5 |int main() {

6 float radius = 5.0;

7 float area;

8

9 area = PI * radius * radius;
0

1 printf ("Radius: %.2f\n", radius);
2 printf ("Area: 7.2f\n", area);
3

4 return O0;

5|}

Prof. Jyotiprakash Mishra C Programming: Deck 2 57 /59

Sample Solution: Circle Area Output

Radius: 5.00
Area: 78.54

Prof. Jyotiprakash Mishra C Programming: Deck 2 58 /59

End of Deck 2

Questions?

Next: Deck 3 - Type Conversions

Prof. Jyotiprakash Mishra C Programming: Deck 2

	Introduction to Data Types
	Fundamental Data Types
	Size Modifiers
	Signed vs Unsigned
	The sizeof() Operator
	Variables
	Constants
	Program Examples
	Format Specifiers Reference
	Key Concepts Summary
	Practice Exercises

