
C Programming: Deck 2
Data Types & Variables

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming: Deck 2 1 / 59

Topics Covered

1 Introduction to Data Types

2 Fundamental Data Types

3 Size Modifiers

4 Signed vs Unsigned

5 The sizeof() Operator

6 Variables

7 Constants

8 Program Examples

9 Format Specifiers Reference

10 Key Concepts Summary

11 Practice Exercises

Prof. Jyotiprakash Mishra C Programming: Deck 2 2 / 59

Why Data Types?

Data types define what kind of data a variable can hold

Determine how much memory is allocated

Specify what operations can be performed

Help compiler detect errors

C is a statically-typed language - type must be declared

Prof. Jyotiprakash Mishra C Programming: Deck 2 3 / 59

Categories of Data Types in C

1 Basic/Primitive Types

int, char, float, double

2 Derived Types

Arrays, Pointers, Structures, Unions

3 Enumeration Type

enum

4 Void Type

void

This deck focuses on basic/primitive types

Prof. Jyotiprakash Mishra C Programming: Deck 2 4 / 59

Integer Type: int

Stores whole numbers (no decimal point)

Can be positive, negative, or zero

Typically 4 bytes (32 bits) on most systems

Range: -2,147,483,648 to 2,147,483,647 (on 32-bit systems)

Default size depends on system architecture

Examples: -42, 0, 100, 2024

Prof. Jyotiprakash Mishra C Programming: Deck 2 5 / 59

Character Type: char

Stores a single character

Typically 1 byte (8 bits)

Enclosed in single quotes

Internally stored as integer (ASCII value)

Range: -128 to 127 (signed) or 0 to 255 (unsigned)

Examples: ’A’, ’z’, ’5’, ’\n’, ’$’

Prof. Jyotiprakash Mishra C Programming: Deck 2 6 / 59

Floating Point Type: float

Stores decimal numbers (real numbers)

Single precision floating-point

Typically 4 bytes (32 bits)

Precision: approximately 6-7 decimal digits

Can represent very large or very small numbers

Examples: 3.14, -0.001, 2.5, 1.0

Prof. Jyotiprakash Mishra C Programming: Deck 2 7 / 59

Double Precision Type: double

Stores decimal numbers with higher precision

Double precision floating-point

Typically 8 bytes (64 bits)

Precision: approximately 15-16 decimal digits

More accurate than float

Default type for decimal literals in C

Examples: 3.141592653589793, -0.00000001, 1e10

Prof. Jyotiprakash Mishra C Programming: Deck 2 8 / 59

Basic Data Types Summary

Type Size Format Use
int 4 bytes %d Whole numbers
char 1 byte %c Single character
float 4 bytes %f Decimals (low precision)
double 8 bytes %lf Decimals (high precision)

Note: Sizes may vary by system; these are typical values

Prof. Jyotiprakash Mishra C Programming: Deck 2 9 / 59

What are Size Modifiers?

Modify the size and range of basic data types

Applied mainly to int type

Can increase or decrease storage size

Affect the range of values that can be stored

Modifiers:

short

long

long long

Prof. Jyotiprakash Mishra C Programming: Deck 2 10 / 59

short int

Typically 2 bytes (16 bits)

Range: -32,768 to 32,767

Uses less memory than int

Can write as short int or just short

Declaration:

short x;

short int y;

Prof. Jyotiprakash Mishra C Programming: Deck 2 11 / 59

long int

Typically 4 or 8 bytes (system dependent)

On 32-bit: 4 bytes, same as int

On 64-bit: 8 bytes, larger range

Range: -2,147,483,648 to 2,147,483,647 (32-bit)

Can write as long int or just long

Declaration:

long x;

long int y;

Prof. Jyotiprakash Mishra C Programming: Deck 2 12 / 59

long long int

At least 8 bytes (64 bits)

Range: -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

For very large numbers

Introduced in C99 standard

Can write as long long int or long long

Declaration:

long long x;

long long int y;

Prof. Jyotiprakash Mishra C Programming: Deck 2 13 / 59

long double

Extended precision floating-point

Typically 10, 12, or 16 bytes (system dependent)

Greater precision than double

Precision: approximately 18-19+ decimal digits

For high-precision scientific calculations

Declaration:

long double pi = 3.14159265358979323846L;

Prof. Jyotiprakash Mishra C Programming: Deck 2 14 / 59

Understanding Signed and Unsigned

Signed:

Can store both positive and negative values

Default for integer types

One bit used for sign (+ or -)

Unsigned:

Can store only non-negative values (0 and positive)

All bits used for magnitude

Doubles the positive range

Prof. Jyotiprakash Mishra C Programming: Deck 2 15 / 59

Signed vs Unsigned: Range Comparison

Type Range
signed char -128 to 127
unsigned char 0 to 255
signed short -32,768 to 32,767
unsigned short 0 to 65,535
signed int -2,147,483,648 to 2,147,483,647
unsigned int 0 to 4,294,967,295
signed long long −263 to 263 − 1
unsigned long long 0 to 264 − 1

Prof. Jyotiprakash Mishra C Programming: Deck 2 16 / 59

When to Use Unsigned?

Use unsigned when:

Value will never be negative (e.g., count, size, age)

Need larger positive range

Working with bit operations

Declaration:

1 unsigned int age = 25;

2 unsigned long population = 8000000000 UL;

3 unsigned char byte = 255;

Prof. Jyotiprakash Mishra C Programming: Deck 2 17 / 59

sizeof() Operator

Returns the size of a type or variable in bytes

Compile-time operator (evaluated at compile time)

Returns value of type size t (unsigned integer)

Syntax: sizeof(type) or sizeof variable

Examples:

1 sizeof(int)

2 sizeof(char)

3 sizeof(double)

4 sizeof(x) // where x is a variable

Prof. Jyotiprakash Mishra C Programming: Deck 2 18 / 59

What is a Variable?

Named storage location in memory

Holds data that can change during program execution

Must be declared before use

Has a type, name, and value

Variable Declaration Syntax:

datatype variable name;

Prof. Jyotiprakash Mishra C Programming: Deck 2 19 / 59

Variable Declaration

Simple Declaration:

1 int age;

2 char grade;

3 float price;

4 double pi;

Multiple Variables of Same Type:

1 int x, y, z;

2 float a, b, c;

Prof. Jyotiprakash Mishra C Programming: Deck 2 20 / 59

Variable Initialization

Declaration with Initialization:

1 int age = 25;

2 char grade = ’A’;

3 float price = 99.99;

4 double pi = 3.14159;

Multiple Variables with Initialization:

1 int x = 10, y = 20, z = 30;

2 float a = 1.5, b = 2.5;

Prof. Jyotiprakash Mishra C Programming: Deck 2 21 / 59

Variable Naming Rules

Valid Names:

Must start with letter (a-z, A-Z) or underscore ()

Can contain letters, digits (0-9), and underscores

Case-sensitive (age ̸= Age)

Cannot use C keywords (int, if, while, etc.)

Good Examples: age, student name, marks1, temp

Bad Examples: 2age, student-name, int, my$money

Prof. Jyotiprakash Mishra C Programming: Deck 2 22 / 59

What are Constants?

Fixed values that cannot be changed during program execution

Improve code readability

Make code easier to maintain

Two ways to define constants in C:
1 Using const keyword
2 Using #define preprocessor directive

Prof. Jyotiprakash Mishra C Programming: Deck 2 23 / 59

Constants using const Keyword

Syntax:

1 const datatype variable_name = value;

Examples:

1 const int MAX_SIZE = 100;

2 const float PI = 3.14159;

3 const char GRADE = ’A’;

Value cannot be modified later

Attempting to modify causes compilation error

Type-safe (compiler checks type)

Prof. Jyotiprakash Mishra C Programming: Deck 2 24 / 59

Constants using #define

Syntax:

1 #define IDENTIFIER value

Examples:

1 #define MAX_SIZE 100

2 #define PI 3.14159

3 #define NEWLINE ’\n’

Preprocessor replaces all occurrences before compilation

No semicolon at the end

No type checking

Convention: use UPPERCASE names

Prof. Jyotiprakash Mishra C Programming: Deck 2 25 / 59

const vs #define

Feature const #define
Type checking Yes No
Memory allocation Uses memory Text replacement
Scope Has scope Global
Debugging Can debug Cannot debug
Usage Modern C Traditional C

Prof. Jyotiprakash Mishra C Programming: Deck 2 26 / 59

Program 1: Basic Variable Usage

1 #include <stdio.h>

2

3 int main() {

4 int age = 25;

5 char grade = ’A’;

6 float height = 5.9;

7 double pi = 3.14159;

8

9 printf("Age: %d\n", age);

10 printf("Grade: %c\n", grade);

11 printf("Height: %f\n", height);

12 printf("Pi: %lf\n", pi);

13

14 return 0;

15 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 27 / 59

Program 1: Output

Age: 25

Grade: A

Height: 5.900000

Pi: 3.141590

Observations:

%d for integers

%c for characters

%f for float (shows 6 decimal places by default)

%lf for double

Prof. Jyotiprakash Mishra C Programming: Deck 2 28 / 59

Program 2: sizeof() Operator

1 #include <stdio.h>

2

3 int main() {

4 printf("Size of char: %lu byte(s)\n",

5 sizeof(char));

6 printf("Size of int: %lu byte(s)\n",

7 sizeof(int));

8 printf("Size of float: %lu byte(s)\n",

9 sizeof(float));

10 printf("Size of double: %lu byte(s)\n",

11 sizeof(double));

12 printf("Size of long long: %lu byte(s)\n",

13 sizeof(long long));

14

15 return 0;

16 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 29 / 59

Program 2: Output

Size of char: 1 byte(s)

Size of int: 4 byte(s)

Size of float: 4 byte(s)

Size of double: 8 byte(s)

Size of long long: 8 byte(s)

Notes:

%lu used for size t (unsigned long)

Output may vary on different systems

Shows typical values on 64-bit systems

Prof. Jyotiprakash Mishra C Programming: Deck 2 30 / 59

Program 3: All Integer Types Sizes

1 #include <stdio.h>

2

3 int main() {

4 printf("short: %lu bytes\n", sizeof(short));

5 printf("int: %lu bytes\n", sizeof(int));

6 printf("long: %lu bytes\n", sizeof(long));

7 printf("long long: %lu bytes\n",

8 sizeof(long long));

9

10 printf("\nSigned vs Unsigned :\n");

11 printf("signed int: %lu bytes\n",

12 sizeof(signed int));

13 printf("unsigned int: %lu bytes\n",

14 sizeof(unsigned int));

15

16 return 0;

17 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 31 / 59

Program 3: Output

short: 2 bytes

int: 4 bytes

long: 8 bytes

long long: 8 bytes

Signed vs Unsigned:

signed int: 4 bytes

unsigned int: 4 bytes

Observation:

Signed and unsigned have same size

Only the range differs, not the memory

Prof. Jyotiprakash Mishra C Programming: Deck 2 32 / 59

Program 4: Signed vs Unsigned Range

1 #include <stdio.h>

2

3 int main() {

4 signed char sc = -128;

5 unsigned char uc = 255;

6

7 printf("Signed char: %d\n", sc);

8 printf("Unsigned char: %u\n", uc);

9

10 signed int si = -2147483648;

11 unsigned int ui = 4294967295U;

12

13 printf("Signed int: %d\n", si);

14 printf("Unsigned int: %u\n", ui);

15

16 return 0;

17 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 33 / 59

Program 4: Output

Signed char: -128

Unsigned char: 255

Signed int: -2147483648

Unsigned int: 4294967295

Notes:

%u for unsigned integers

U suffix for unsigned literals

Demonstrates minimum and maximum values

Prof. Jyotiprakash Mishra C Programming: Deck 2 34 / 59

Program 5: Integer Overflow

1 #include <stdio.h>

2

3 int main() {

4 signed char x = 127; // Max value

5 printf("Before overflow: %d\n", x);

6

7 x = x + 1; // Overflow

8 printf("After overflow: %d\n", x);

9

10 unsigned char y = 255; // Max value

11 printf("\nBefore overflow: %u\n", y);

12

13 y = y + 1; // Wraps to 0

14 printf("After overflow: %u\n", y);

15

16 return 0;

17 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 35 / 59

Program 5: Output

Before overflow: 127

After overflow: -128

Before overflow: 255

After overflow: 0

Observations:

Signed overflow wraps from max to min

Unsigned overflow wraps from max to 0

This is undefined behavior for signed types

Prof. Jyotiprakash Mishra C Programming: Deck 2 36 / 59

Program 6: Integer Underflow

1 #include <stdio.h>

2

3 int main() {

4 signed char x = -128; // Min value

5 printf("Before underflow: %d\n", x);

6

7 x = x - 1; // Underflow

8 printf("After underflow: %d\n", x);

9

10 unsigned char y = 0; // Min value

11 printf("\nBefore underflow: %u\n", y);

12

13 y = y - 1; // Wraps to 255

14 printf("After underflow: %u\n", y);

15

16 return 0;

17 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 37 / 59

Program 6: Output

Before underflow: -128

After underflow: 127

Before underflow: 0

After underflow: 255

Observations:

Signed underflow wraps from min to max

Unsigned underflow wraps from 0 to max

Demonstrates circular nature of integer storage

Prof. Jyotiprakash Mishra C Programming: Deck 2 38 / 59

Program 7: Float Precision

1 #include <stdio.h>

2

3 int main() {

4 float f = 3.14159265358979323846;

5 double d = 3.14159265358979323846;

6 long double ld = 3.14159265358979323846L;

7

8 printf("float: %.20f\n", f);

9 printf("double: %.20lf\n", d);

10 printf("long double: %.20Lf\n", ld);

11

12 return 0;

13 }

Note: .20 specifies 20 decimal places

Prof. Jyotiprakash Mishra C Programming: Deck 2 39 / 59

Program 7: Output

float: 3.14159274101257324219

double: 3.14159265358979311600

long double: 3.14159265358979323851

Observations:

float loses precision after 6-7 digits

double maintains precision up to 15-16 digits

long double has highest precision

Notice the rounding errors due to binary representation

Prof. Jyotiprakash Mishra C Programming: Deck 2 40 / 59

Program 8: Character and ASCII

1 #include <stdio.h>

2

3 int main() {

4 char ch1 = ’A’;

5 char ch2 = 65; // ASCII value of ’A’

6 char ch3 = ’a’;

7

8 printf("Character: %c, ASCII: %d\n", ch1 , ch1);

9 printf("Character: %c, ASCII: %d\n", ch2 , ch2);

10 printf("Character: %c, ASCII: %d\n", ch3 , ch3);

11

12 printf("\nDifference: %d\n", ch3 - ch1);

13

14 return 0;

15 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 41 / 59

Program 8: Output

Character: A, ASCII: 65

Character: A, ASCII: 65

Character: a, ASCII: 97

Difference: 32

Observations:

Characters are stored as integers (ASCII values)

%c displays character, %d displays ASCII

’A’ = 65, ’a’ = 97

Difference between lowercase and uppercase is 32

Prof. Jyotiprakash Mishra C Programming: Deck 2 42 / 59

Program 9: Constants with const

1 #include <stdio.h>

2

3 int main() {

4 const int MAX_STUDENTS = 50;

5 const float PI = 3.14159;

6

7 printf("Maximum students: %d\n", MAX_STUDENTS);

8 printf("Value of PI: %f\n", PI);

9

10 // MAX_STUDENTS = 100; // ERROR! Cannot modify

11

12 printf("These values cannot be changed !\n");

13

14 return 0;

15 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 43 / 59

Program 9: Output

Maximum students: 50

Value of PI: 3.141590

These values cannot be changed!

Notes:

const prevents modification

Compiler error if you try to change the value

Good practice for values that shouldn’t change

Prof. Jyotiprakash Mishra C Programming: Deck 2 44 / 59

Program 10: Constants with #define

1 #include <stdio.h>

2

3 #define MAX_SIZE 100

4 #define PI 3.14159

5 #define GREETING "Hello , World!"

6

7 int main() {

8 printf("Max size: %d\n", MAX_SIZE);

9 printf("PI value: %f\n", PI);

10 printf("%s\n", GREETING);

11

12 int array_size = MAX_SIZE;

13 printf("Array size: %d\n", array_size);

14

15 return 0;

16 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 45 / 59

Program 10: Output

Max size: 100

PI value: 3.141590

Hello , World!

Array size: 100

Notes:

#define does text replacement

No type checking

Can define any constant (number, string, expression)

Processed by preprocessor before compilation

Prof. Jyotiprakash Mishra C Programming: Deck 2 46 / 59

Program 11: Variable Scope Example

1 #include <stdio.h>

2

3 int global_var = 100; // Global variable

4

5 int main() {

6 int local_var = 50; // Local variable

7

8 printf("Global variable: %d\n", global_var);

9 printf("Local variable: %d\n", local_var);

10

11 {

12 int block_var = 25; // Block scope

13 printf("Block variable: %d\n", block_var);

14 printf("Can access local: %d\n", local_var);

15 }

16 // block_var not accessible here

17

18 return 0;

19 }
Prof. Jyotiprakash Mishra C Programming: Deck 2 47 / 59

Program 11: Output

Global variable: 100

Local variable: 50

Block variable: 25

Can access local: 50

Observations:

Global variables declared outside all functions

Local variables declared inside functions

Block variables exist only within {} braces

Inner scopes can access outer variables

Prof. Jyotiprakash Mishra C Programming: Deck 2 48 / 59

Program 12: Formatting Output

1 #include <stdio.h>

2

3 int main() {

4 int x = 5;

5 float y = 3.14159;

6

7 printf("Default int: %d\n", x);

8 printf("Width 5: %5d\n", x);

9 printf("Zero -padded: %05d\n", x);

10

11 printf("\nDefault float: %f\n", y);

12 printf("2 decimals: %.2f\n", y);

13 printf("Width 10, 3 decimals: %10.3f\n", y);

14

15 return 0;

16 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 49 / 59

Program 12: Output

Default int: 5

Width 5: 5

Zero -padded: 00005

Default float: 3.141590

2 decimals: 3.14

Width 10, 3 decimals: 3.142

Format Specifiers:

%5d - minimum width of 5

%05d - zero padding

%.2f - 2 decimal places

%10.3f - width 10, 3 decimals

Prof. Jyotiprakash Mishra C Programming: Deck 2 50 / 59

Common Format Specifiers

Specifier Type
%d or %i int (signed)
%u unsigned int
%c char
%f float
%lf double
%Lf long double
%ld long int
%lld long long int
%lu unsigned long
%llu unsigned long long
%x hexadecimal (lowercase)
%X hexadecimal (uppercase)
%o octal

Prof. Jyotiprakash Mishra C Programming: Deck 2 51 / 59

Important Points to Remember

1 Every variable must be declared with a type

2 Type determines size, range, and operations

3 sizeof() returns size in bytes

4 Signed types can be negative, unsigned cannot

5 Constants prevent accidental value changes

6 Use appropriate type for your data needs

7 Be careful with overflow and underflow

8 float has less precision than double

Prof. Jyotiprakash Mishra C Programming: Deck 2 52 / 59

Common Mistakes

1 Using uninitialized variables

May contain garbage values
Always initialize before use

2 Integer overflow/underflow

Check ranges before operations

3 Using %f for double in scanf()

Use %lf for double in scanf()

%f works for printf() due to promotion

4 Comparing floats with ==

Use tolerance due to precision issues

Prof. Jyotiprakash Mishra C Programming: Deck 2 53 / 59

Try These!

1 Declare variables of all basic types and print their sizes

2 Write a program to swap two integer variables

3 Calculate the area of a circle using const for PI

4 Demonstrate overflow with different integer types

5 Print ASCII values of characters ’A’ through ’Z’

6 Create a program showing precision difference between float and
double

Prof. Jyotiprakash Mishra C Programming: Deck 2 54 / 59

Sample Solution: Swap Two Numbers

1 #include <stdio.h>

2

3 int main() {

4 int a = 10, b = 20, temp;

5

6 printf("Before swap: a = %d, b = %d\n", a, b);

7

8 temp = a;

9 a = b;

10 b = temp;

11

12 printf("After swap: a = %d, b = %d\n", a, b);

13

14 return 0;

15 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 55 / 59

Sample Solution: Swap Output

Before swap: a = 10, b = 20

After swap: a = 20, b = 10

Prof. Jyotiprakash Mishra C Programming: Deck 2 56 / 59

Sample Solution: Circle Area

1 #include <stdio.h>

2

3 #define PI 3.14159

4

5 int main() {

6 float radius = 5.0;

7 float area;

8

9 area = PI * radius * radius;

10

11 printf("Radius: %.2f\n", radius);

12 printf("Area: %.2f\n", area);

13

14 return 0;

15 }

Prof. Jyotiprakash Mishra C Programming: Deck 2 57 / 59

Sample Solution: Circle Area Output

Radius: 5.00

Area: 78.54

Prof. Jyotiprakash Mishra C Programming: Deck 2 58 / 59

End of Deck 2

Questions?

Next: Deck 3 - Type Conversions

Prof. Jyotiprakash Mishra C Programming: Deck 2 59 / 59

	Introduction to Data Types
	Fundamental Data Types
	Size Modifiers
	Signed vs Unsigned
	The sizeof() Operator
	Variables
	Constants
	Program Examples
	Format Specifiers Reference
	Key Concepts Summary
	Practice Exercises

