
C Programming: Deck 3
Type Conversions

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming: Deck 3 1 / 40



Topics Covered

1 Introduction to Type Conversion

2 Implicit Type Conversion (Widening)

3 Explicit Type Conversion (Casting)

4 Integer Promotion

5 Conversion in Expressions

6 Program Examples

7 Conversion Rules Summary

8 Common Pitfalls

9 Best Practices

10 Practice Exercises

Prof. Jyotiprakash Mishra C Programming: Deck 3 2 / 40



What is Type Conversion?

Converting a value from one data type to another

Necessary when mixing different types in expressions

Can happen automatically or manually

Important to understand to avoid data loss and bugs

Two Types of Conversion:

1 Implicit Conversion (Automatic) - Done by compiler

2 Explicit Conversion (Casting) - Done by programmer

Prof. Jyotiprakash Mishra C Programming: Deck 3 3 / 40



Why Do We Need Type Conversion?

Different types cannot be directly mixed

Operations require operands of same type

Function arguments must match parameter types

Assignment requires compatible types

Example Scenarios:

Adding an int and a float

Dividing two integers but want decimal result

Storing a double value in an int variable

Passing arguments to functions

Prof. Jyotiprakash Mishra C Programming: Deck 3 4 / 40



Implicit Conversion - Automatic

Also called type promotion or coercion

Performed automatically by the compiler

Happens when mixing types in expressions

Converts smaller type to larger type

No data loss in widening conversions

Programmer doesn’t need to do anything

Prof. Jyotiprakash Mishra C Programming: Deck 3 5 / 40



Widening Conversion Hierarchy

char short int long

float double long double

Direction: Smaller → Larger (Safe, No Loss)

Prof. Jyotiprakash Mishra C Programming: Deck 3 6 / 40



Rules for Implicit Conversion

When mixing types in an expression:

1 If one operand is long double, convert other to long double

2 Else if one is double, convert other to double

3 Else if one is float, convert other to float

4 Else perform integer promotions:

char, short promoted to int

If one is unsigned long, convert to unsigned long

If one is long, convert to long

If one is unsigned, convert to unsigned

Prof. Jyotiprakash Mishra C Programming: Deck 3 7 / 40



Explicit Conversion - Casting

Manually specified by the programmer

Uses the cast operator: (type)

Can convert from larger type to smaller type

May result in data loss

Gives programmer full control

Syntax:
1 (target_type) expression

Examples:
1 (int) 3.14 // Result: 3

2 (float) 5 // Result: 5.0

3 (char) 65 // Result: ’A’

Prof. Jyotiprakash Mishra C Programming: Deck 3 8 / 40



Narrowing Conversion

Converting from larger type to smaller type

Requires explicit casting

May cause data loss

Decimal part is truncated (not rounded)

Value may be out of range for target type

Examples of Data Loss:

double to int: loses decimal part

int to char: may lose high-order bits

long to short: may overflow

Prof. Jyotiprakash Mishra C Programming: Deck 3 9 / 40



Integer Promotion Rules

char and short are promoted to int

Happens automatically in expressions

Done before any arithmetic operation

Ensures operations work on at least int size

Why?

CPU performs arithmetic on register-sized integers

Most CPUs don’t have byte-sized arithmetic operations

Improves performance and consistency

Prof. Jyotiprakash Mishra C Programming: Deck 3 10 / 40



Arithmetic Conversions

In mixed-type arithmetic expressions:

1 Both operands are promoted to a common type

2 Operation is performed in that type

3 Result has that type

Example: int + float

int is converted to float

Addition performed in float

Result is float

Prof. Jyotiprakash Mishra C Programming: Deck 3 11 / 40



Assignment Conversions

When assigning to a variable:

Right-hand side is converted to type of left-hand side

May involve narrowing (with potential data loss)

Compiler may warn about narrowing

Examples:

int x = 3.7; → x becomes 3

float y = 5; → y becomes 5.0

char c = 300; → overflow, undefined result

Prof. Jyotiprakash Mishra C Programming: Deck 3 12 / 40



Program 1: Implicit Widening - int to float

1 #include <stdio.h>

2 int main() {

3 int i = 10;

4 float f;

5 f = i; // Implicit

6 printf("int: %d\n", i);

7 printf("float: %f\n", f);

8 return 0;

9 }

Output:
int: 10

float: 10.000000

Explanation:

int automatically converted
to float

No data loss

Decimal part added

Prof. Jyotiprakash Mishra C Programming: Deck 3 13 / 40



Program 2: Implicit Widening - char to int

1 #include <stdio.h>

2 int main() {

3 char c = ’A’;

4 int i;

5 i = c; // Implicit

6 printf("char: %c\n", c);

7 printf("int: %d\n", i);

8 return 0;

9 }

Output:
char: A

int: 65

Explanation:

Character stored as ASCII
value

Widened to int

’A’ = 65

Prof. Jyotiprakash Mishra C Programming: Deck 3 14 / 40



Program 3: Narrowing - float to int (Data Loss)

1 #include <stdio.h>

2 int main() {

3 float f = 3.14159;

4 int i;

5 i = f; // Implicit

6 printf("float: %f\n", f);

7 printf("int: %d\n", i);

8 return 0;

9 }

Output:
float: 3.141590

int: 3

Explanation:

Decimal part truncated

NOT rounded

Data loss occurs

Compiler may warn

Prof. Jyotiprakash Mishra C Programming: Deck 3 15 / 40



Program 4: Narrowing - double to int

1 #include <stdio.h>

2 int main() {

3 double d1 = 9.99;

4 double d2 = -5.67;

5 int i1 , i2;

6 i1 = d1;

7 i2 = d2;

8 printf("%.2lf -> %d\n",

9 d1, i1);

10 printf("%.2lf -> %d\n",

11 d2, i2);

12 return 0;

13 }

Output:
9.99 -> 9

-5.67 -> -5

Explanation:

Truncation towards zero

9.99 becomes 9

-5.67 becomes -5

Not rounding!

Prof. Jyotiprakash Mishra C Programming: Deck 3 16 / 40



Program 5: Explicit Casting - float to int

1 #include <stdio.h>

2 int main() {

3 float f = 7.89;

4 int i;

5 i = (int)f; // Explicit

6 printf("Original: %f\n",

7 f);

8 printf("Casted: %d\n", i);

9 printf("Float still: %f\n",

10 f);

11 return 0;

12 }

Output:
Original: 7.890000

Casted: 7

Float still: 7.890000

Explanation:

Explicit cast to int

Original value unchanged

Programmer’s intention
clear

Prof. Jyotiprakash Mishra C Programming: Deck 3 17 / 40



Program 6: Explicit Casting - int to char

1 #include <stdio.h>

2 int main() {

3 int i1 = 65;

4 int i2 = 97;

5 char c1, c2;

6 c1 = (char)i1;

7 c2 = (char)i2;

8 printf("%d -> %c\n",

9 i1, c1);

10 printf("%d -> %c\n",

11 i2, c2);

12 return 0;

13 }

Output:
65 -> A

97 -> a

Explanation:

ASCII values converted to
characters

65 = ’A’

97 = ’a’

Explicit cast used

Prof. Jyotiprakash Mishra C Programming: Deck 3 18 / 40



Program 7: Mixed Type Arithmetic

1 #include <stdio.h>

2 int main() {

3 int i = 5;

4 float f = 2.5;

5 float result;

6 result = i + f;

7 printf("int: %d\n", i);

8 printf("float: %f\n", f);

9 printf("Result: %f\n",

10 result );

11 return 0;

12 }

Output:
int: 5

float: 2.500000

Result: 7.500000

Explanation:

i promoted to float

5 becomes 5.0

Addition in float

Result is float

Prof. Jyotiprakash Mishra C Programming: Deck 3 19 / 40



Program 8: Integer Division vs Float Division

1 #include <stdio.h>

2 int main() {

3 int a = 7, b = 2;

4 int result1;

5 float result2;

6 result1 = a / b;

7 result2 = a / b;

8 printf("Int result: %d\n",

9 result1 );

10 printf("Float var: %f\n",

11 result2 );

12 return 0;

13 }

Output:
Int result: 3

Float var: 3.000000

Explanation:

Both use integer division

7/2 = 3 (truncated)

result2 gets 3.0

Still data loss!

Prof. Jyotiprakash Mishra C Programming: Deck 3 20 / 40



Program 9: Correct Float Division

1 #include <stdio.h>

2 int main() {

3 int a = 7, b = 2;

4 float result;

5 // Cast to get decimal

6 result = (float)a / b;

7 printf("Division: %d/%d\n",

8 a, b);

9 printf("Result: %f\n",

10 result );

11 return 0;

12 }

Output:
Division: 7/2

Result: 3.500000

Explanation:

Cast a to float

b promoted to float

Float division performed

Correct decimal result

Prof. Jyotiprakash Mishra C Programming: Deck 3 21 / 40



Program 10: Average Calculation (Wrong)

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 20, c = 25;

4 float avg;

5 avg = (a + b + c) / 3;

6 printf("Numbers: %d, %d, %d\n",

7 a, b, c);

8 printf("Average: %f\n", avg);

9 return 0;

10 }

Output:
Numbers: 10, 20, 25

Average: 18.000000

Explanation:

Sum: 55 (int)

55 / 3 = 18 (int division)

Result: 18.0

Wrong! Should be 18.333...

Prof. Jyotiprakash Mishra C Programming: Deck 3 22 / 40



Program 11: Average Calculation (Correct)

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 20, c = 25;

4 float avg;

5 avg = (a + b + c) / 3.0;

6 printf("Numbers: %d, %d, %d\n",

7 a, b, c);

8 printf("Average: %f\n", avg);

9 return 0;

10 }

Output:
Numbers: 10, 20, 25

Average: 18.333333

Explanation:

Divide by 3.0 (double)

Sum promoted to double

Double division

Correct result!

Prof. Jyotiprakash Mishra C Programming: Deck 3 23 / 40



Program 12: char Arithmetic and Promotion

1 #include <stdio.h>

2 int main() {

3 char c1 = ’A’;

4 char c2 = ’B’;

5 int diff;

6 diff = c2 - c1;

7 printf("c1: %c (%d)\n",

8 c1, c1);

9 printf("c2: %c (%d)\n",

10 c2, c2);

11 printf("Difference: %d\n",

12 diff);

13 return 0;

14 }

Output:
c1: A (65)

c2: B (66)

Difference: 1

Explanation:

Both chars promoted to int

ASCII: B(66) - A(65)

Result: 1

Useful for char operations

Prof. Jyotiprakash Mishra C Programming: Deck 3 24 / 40



Program 13: Overflow in Narrowing

1 #include <stdio.h>

2 int main() {

3 int i = 300;

4 char c;

5 c = (char)i;

6 printf("int value: %d\n", i);

7 printf("char value: %d\n",

8 c);

9 printf("As character: %c\n",

10 c);

11 return 0;

12 }

Output:
int value: 300

char value: 44

As character: ,

Explanation:

char range: -128 to 127

300 overflows

Wraps around: 300 % 256
= 44

Undefined behavior!

Prof. Jyotiprakash Mishra C Programming: Deck 3 25 / 40



Program 14: Comparing Conversions

1 #include <stdio.h>

2 int main() {

3 int i = 100;

4 float f = 3.14;

5 double d = 2.71828;

6 char c = ’Z’;

7 printf("Original values :\n");

8 printf("int: %d, float: %.2f, double: %.5lf, char: %c\n\n", i, f, d, c);

9 printf("Implicit conversions :\n");

10 printf("int to float: %f\n", (float)i);

11 printf("float to double: %.5lf\n", (double)f);

12 printf("char to int: %d\n", (int)c);

13 printf("\nNarrowing conversions :\n");

14 printf("double to int: %d\n", (int)d);

15 printf("float to int: %d\n", (int)f);

16 printf("int to char: %c\n", (char)i);

17 return 0;

18 }

Prof. Jyotiprakash Mishra C Programming: Deck 3 26 / 40



Program 14: Output

Original values:

int: 100, float: 3.14, double: 2.71828 , char: Z

Implicit conversions:

int to float: 100.000000

float to double: 3.14000

char to int: 90

Narrowing conversions:

double to int: 2

float to int: 3

int to char: d

Note: 100 in ASCII = ’d’, showing potential unexpected results in
narrowing.

Prof. Jyotiprakash Mishra C Programming: Deck 3 27 / 40



Program 15: Celsius to Fahrenheit

1 #include <stdio.h>

2 int main() {

3 float celsius = 25.0;

4 float fahrenheit;

5 fahrenheit =

6 (9.0/5.0) * celsius + 32;

7 printf("Celsius: %.2f\n",

8 celsius );

9 printf("Fahrenheit: %.2f\n",

10 fahrenheit );

11 return 0;

12 }

Output:
Celsius: 25.00

Fahrenheit: 77.00

Explanation:

Use 9.0 and 5.0 for float
division

Otherwise 9/5 = 1 (integer)

Correct formula application

Prof. Jyotiprakash Mishra C Programming: Deck 3 28 / 40



Type Conversion Hierarchy

From To Result
char int Safe, widening
short int Safe, widening
int long Safe, widening
int float Safe, may lose precision
float double Safe, widening
double int Data loss, truncation
float int Data loss, truncation
int char May overflow
long int May overflow

Prof. Jyotiprakash Mishra C Programming: Deck 3 29 / 40



When to Use Explicit Casting

Use explicit casting when:

1 You want to make your intention clear

2 Converting from larger to smaller type

3 Integer division but need float result

4 Avoiding compiler warnings

5 Working with different numeric types

Benefits:

Code is more readable

Intention is explicit

Avoids unexpected behavior

Suppresses compiler warnings (when appropriate)

Prof. Jyotiprakash Mishra C Programming: Deck 3 30 / 40



Common Mistakes - Integer Division

Problem:

Expecting decimal result from integer division

Wrong:

float result = 5 / 2; → 2.0 (not 2.5!)

Correct:

float result = 5.0 / 2; → 2.5

float result = (float)5 / 2; → 2.5

float result = 5 / 2.0; → 2.5

Prof. Jyotiprakash Mishra C Programming: Deck 3 31 / 40



Common Mistakes - Truncation

Problem:

Assuming rounding instead of truncation

Examples:

(int)3.7 → 3, not 4

(int)9.99 → 9, not 10

(int)-2.5 → -2, not -3

Remember:

Conversion truncates towards zero

Does NOT round to nearest integer

Use math functions for rounding

Prof. Jyotiprakash Mishra C Programming: Deck 3 32 / 40



Common Mistakes - Assignment Order

Problem:

Performing operation before casting

Wrong:

float avg = (float)(a + b) / 2;

Parentheses cause integer division first

Then casts result to float

Correct:

float avg = (float)(a + b) / 2.0;

float avg = (a + b) / 2.0;

Cast one operand or use float literal

Prof. Jyotiprakash Mishra C Programming: Deck 3 33 / 40



Common Mistakes - Overflow

Problem:

Value too large for target type

Examples:

char c = 500; → Overflow

short s = 100000; → Overflow

Results:

Undefined behavior for signed types

Wraps around for unsigned types

Always check ranges!

Prof. Jyotiprakash Mishra C Programming: Deck 3 34 / 40



Best Practices for Type Conversion

1 Be explicit - Use casts to show intention

2 Avoid narrowing - Only when necessary

3 Check ranges - Ensure values fit in target type

4 Use float literals - Write 3.0 instead of 3 for division

5 Understand truncation - Know decimal parts are lost

6 Watch for overflow - Especially with small types

7 Use parentheses - Make order of operations clear

8 Test edge cases - Maximum and minimum values

Prof. Jyotiprakash Mishra C Programming: Deck 3 35 / 40



Summary: Key Points

Widening (small → large): Safe, automatic

Narrowing (large → small): May lose data, needs casting

Integer promotion: char/short promoted to int

Mixed arithmetic: Smaller type promoted to larger

Integer division: Always truncates (not rounds)

Explicit casting: Use (type) syntax

Float division: At least one operand must be float

Truncation: Towards zero, not rounding

Prof. Jyotiprakash Mishra C Programming: Deck 3 36 / 40



Try These!

1 Write a program to divide two integers and get float result

2 Calculate percentage: (marks * 100) / total (avoid integer
division)

3 Convert temperature from Fahrenheit to Celsius

4 Demonstrate data loss when converting double to int

5 Show difference between 5/2 and 5.0/2

6 Write a program showing char promotion in arithmetic

Prof. Jyotiprakash Mishra C Programming: Deck 3 37 / 40



Sample Solution: Integer to Float Division

1 #include <stdio.h>

2 int main() {

3 int a = 7, b = 3;

4 float result;

5 result = (float)a / b;

6 printf("%d / %d = %f\n",

7 a, b, result );

8 return 0;

9 }

Output:
7 / 3 = 2.333333

Prof. Jyotiprakash Mishra C Programming: Deck 3 38 / 40



Sample Solution: Percentage Calculation

1 #include <stdio.h>

2 int main() {

3 int marks = 85;

4 int total = 100;

5 float percentage;

6 percentage =

7 (marks * 100.0) / total;

8 printf("Marks: %d/%d\n",

9 marks , total);

10 printf("Percentage: %.2f%%\n",

11 percentage );

12 return 0;

13 }

Output:
Marks: 85/100

Percentage: 85.00%

Prof. Jyotiprakash Mishra C Programming: Deck 3 39 / 40



End of Deck 3

Questions?

Next: Deck 4 - Operators

Prof. Jyotiprakash Mishra C Programming: Deck 3 40 / 40


	Introduction to Type Conversion
	Implicit Type Conversion (Widening)
	Explicit Type Conversion (Casting)
	Integer Promotion
	Conversion in Expressions
	Program Examples
	Conversion Rules Summary
	Common Pitfalls
	Best Practices
	Practice Exercises

