C Programming: Deck 3

Type Conversions

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming: Deck 3 1/40

Topics Covered

@ Introduction to Type Conversion

© Implicit Type Conversion (Widening)
© Explicit Type Conversion (Casting)
@ Integer Promotion

© Conversion in Expressions

@ Program Examples

@ Conversion Rules Summary

© Common Pitfalls

© Best Practices

@ Practice Exercises

Prof. Jyotiprakash Mishra C Programming: Deck 3

What is Type Conversion?

Converting a value from one data type to another

°
@ Necessary when mixing different types in expressions
@ Can happen automatically or manually

°

Important to understand to avoid data loss and bugs

Two Types of Conversion:
@ Implicit Conversion (Automatic) - Done by compiler
@ Explicit Conversion (Casting) - Done by programmer

Prof. Jyotiprakash Mishra C Programming: Deck 3 3/40

Why Do We Need Type Conversion?

e Different types cannot be directly mixed
@ Operations require operands of same type
@ Function arguments must match parameter types

@ Assignment requires compatible types

Example Scenarios:
@ Adding an int and a float
e Dividing two integers but want decimal result
@ Storing a double value in an int variable

@ Passing arguments to functions

Prof. Jyotiprakash Mishra C Programming: Deck 3 4/40

Implicit Conversion - Automatic
o
o
o
o
o
o

Prof. Jyotiprakash Mishra C Programming: Deck 3 5/40

Also called type promotion or coercion
Performed automatically by the compiler
Happens when mixing types in expressions
Converts smaller type to larger type

No data loss in widening conversions

Programmer doesn’t need to do anything

Widening Conversion Hierarchy

| char | short —{ int | long

’ float }—>{ double }—7 long double

Direction: Smaller — Larger (Safe, No Loss)

Prof. Jyotiprakash Mishra C Programming: Deck 3 6 /40

Rules for Implicit Conversion

When mixing types in an expression:
@ If one operand is long double, convert other to long double
@ Else if one is double, convert other to double
© Else if one is float, convert other to float

© Else perform integer promotions:

e char, short promoted to int

o If one is unsigned long, convert to unsigned long
o If one is long, convert to long

o If one is unsigned, convert to unsigned

Prof. Jyotiprakash Mishra C Programming: Deck 3 7/40

Explicit Conversion - Casting

@ Manually specified by the programmer

@ Uses the cast operator: (type)

@ Can convert from larger type to smaller type
@ May result in data loss

@ Gives programmer full control

Syntax:

l‘ (target_type) expression

Examples:
1 (int) 3.14 // Result: 3
4 (float) 5 // Result: 5.0
(char) 65 // Result: °A°

Prof. Jyotiprakash Mishra C Programming: Deck 3

8/ 40

Narrowing Conversion

Converting from larger type to smaller type
Requires explicit casting
May cause data loss

Decimal part is truncated (not rounded)

® 6 6 o o

Value may be out of range for target type

Examples of Data Loss:
@ double to int: loses decimal part
@ int to char: may lose high-order bits

@ long to short: may overflow

Prof. Jyotiprakash Mishra C Programming: Deck 3 9/40

Integer Promotion Rules

@ char and short are promoted to int
@ Happens automatically in expressions
@ Done before any arithmetic operation
°

Ensures operations work on at least int size

Why?
@ CPU performs arithmetic on register-sized integers
@ Most CPUs don't have byte-sized arithmetic operations

@ Improves performance and consistency

Prof. Jyotiprakash Mishra C Programming: Deck 3

Arithmetic Conversions

In mixed-type arithmetic expressions:
© Both operands are promoted to a common type
@ Operation is performed in that type
© Result has that type

Example: int + float
@ int is converted to float
@ Addition performed in float
@ Result is float

Prof. Jyotiprakash Mishra C Programming: Deck 3

Assignment Conversions

When assigning to a variable:
@ Right-hand side is converted to type of left-hand side
e May involve narrowing (with potential data loss)

@ Compiler may warn about narrowing

Examples:
@ int x = 3.7; — x becomes 3
e float y = 5; — y becomes 5.0
@ char ¢ = 300; — overflow, undefined result

Prof. Jyotiprakash Mishra C Programming: Deck 3 12 /40

Program 1: Implicit Widening - int to float

1| #include <stdio.h> Output:

int main() { |

S]

int i = 10; 3 10

4 float f; ‘ : 10.000000

B f =1i; // Implicit

q printf ("int: %d\n", 1i); .

7 printf ("float: %f\n", £f); Explanat|0n:
return O;

91

@ int automatically converted
to float

@ No data loss

@ Decimal part added

Prof. Jyotiprakash Mishra C Programming: Deck 3 13 /40

Program 2: Implicit Widening - char to int

1| #include <stdio.h> Output:

2 int main() { [
char ¢ = ’A’; ;A
4 int i 3 @5

5 i=c; // Implicit
printf ("char: %c\n", c);

7 printf ("int: %d\n", i); Explanation:
return O;
' @ Character stored as ASCII
value

@ Widened to int
e 'A' =65

Prof. Jyotiprakash Mishra C Programming: Deck 3 14 /40

Program 3: Narrowing - float to int (Data Loss)

1| #include <stdio.h> Output:

2 int main() { R
float f = 3.14159; : 3.141590
int i; ‘ 3 8

4

5 i=f; // Implicit

g printf("float: %f\n", £f); .

7 printf("int: %d\n", i); Explanatlon:
return O;

9 ¥

@ Decimal part truncated
@ NOT rounded

@ Data loss occurs

°

Compiler may warn

Prof. Jyotiprakash Mishra C Programming: Deck 3 15 /40

Program 4: Narrowing - double to int

1| #include <stdio.h> Output:

9 int mainQ) { PO
double dl = 9.99; 9.99 => 9

4 double d2 = -5.67; | 5-67 > -5

5 int i1, i2;

q i1 = d1; .

112 = az; Explanation:
printf ("%.21f -> Y%d\n",

9 di, i1); .

1] printeen 21t o> %da\ar, @ Truncation towards zero

11 42, i2);

1, revumm @ 9.99 becomes 9

@ -5.67 becomes -5

@ Not rounding!

Prof. Jyotiprakash Mishra C Programming: Deck 3 16 / 40

Program 5: Explicit Casting - float to int

1 #include <stdio.h>
2 int main() {

float £ = 7.89;
4 int i; Casted: 7
d i - (int)f; // Ezplicit Float still: 7.890000
6 printf("Original: %f\n",
7 £); . .

printf ("Casted: %d\n", i); EXplaI"latIOI‘I.
9 printf ("Float still: %f\an", L.
1 £); @ Explicit cast to int
11 return O0;
12 ¥ . -

@ Original value unchanged

@ Programmer’s intention
clear

Prof. Jyotiprakash Mishra C Programming: Deck 3 17 /40

Program 6: Explicit Casting - int to char

1| #include <stdio.h> Output:

2 int main() { |
int i1 = 65; 65 -> A
int i2 = 97; 97 -> a

4
5 char c1, c2;
[§ cl = (char)il;
1

e3 = (ohas)i Explanation:
printf ("%d -> %c\n",
¥ o o T, @ ASCII values converted to
11 i2, 2);
14 retura 05 characters
13 ¥
@ 65 ="A’
@ 97 =4’

@ Explicit cast used

Prof. Jyotiprakash Mishra C Programming: Deck 3 18 /40

Program 7: Mixed Type Arithmetic

1 #include <stdio.h>
2 int main() {

int i = 5; 3
float f = 2.5; : 2.500000
float result; Result: 7.500000

4
5
q result = i + f;
7

printf ("int: %d\n", i); H .
printf ("float: %f\n", f); EXplaI"latIOI‘I.
9 printf ("Result: %f\n",
19 =oauil) ¢ @ i promoted to float
11 return O;
12 ¥

@ 5 becomes 5.0
@ Addition in float
@ Result is float

Prof. Jyotiprakash Mishra C Programming: Deck 3 19 /40

Program 8: Integer Division vs Float Division

1| #include <stdio.h> Output:
2 int main() { |
El int a = 7, b = 2; Int result: 3
4| int resulti; Float var: 3.000000
5 float result2;
resultl = a / b; - .
R Explanation:
printf ("Int result: %d\n", . L.
o memlel @ Both use integer division
1 printf ("Float var: %f\n",
11 result2);
12 return O; o 7/2 — 3 (truncated)
13}

@ result?2 gets 3.0
o Still data loss!

Prof. Jyotiprakash Mishra C Programming: Deck 3 20 /40

Program 9: Correct Float Division

1| #include <stdio.h> Output:
2 int main() { |
3 int a =7, b = 2; Division: 7/2
4 float result; Result: 3.500000
5 // Cast to get decimal

result = (float)a / b; . .
7 printf("Division: %d/%d\n", Explanatlon.

a, b);

printf ("Result: %f\n",) Cast a to float
1 result);
17 return O;
193 @ b promoted to float

@ Float division performed

@ Correct decimal result

Prof. Jyotiprakash Mishra C Programming: Deck 3 21 /40

Program 10: Average Calculation (Wrong)

Ol W N

#include <stdio.h>
int main() {
int a = 10, b =
float avg;
avg = (a + b + ¢
printf ("Numbers:
a, b, c);
printf ("Average:
return O;

20, ¢ = 25;

) /35
%d, %d, %d\n",

%f\n", avg);

Prof. Jyotiprakash Mishra

Output:
‘Numbers: 10, 20, 25
Average: 18.000000

Explanation:

e Sum: 55 (int)

@ 55 / 3 = 18 (int division)
@ Result: 18.0

@ Wrong! Should be 18.333...

C Programming: Deck 3 22 /40

Program 11: Average Calculation (Correct)

#include <stdio.h> Output:
int main() { |
int a = 10, b = 20, c = 25; Numbers: 10, 20, 25

Average: 18.333333

Ol W N

float avg;

avg = (a + b + ¢c) / 3.0;

printf ("Numbers: %d, %d, %d\n", -
7 o B o Explanation:

printf ("Average: %f\n", avg);

retura 0; e Divide by 3.0 (double)
@ Sum promoted to double

@ Double division

@ Correct result!

Prof. Jyotiprakash Mishra C Programming: Deck 3 23 /40

Program 12: char Arithmetic and Promotion

1 #include <stdio.h>
2 int main() {
char ci

diff = c2 - ci;
7 printf ("cl: %c (%d)\n",

@i, @il)p
9 printf("c2: %c (%d)\n",
10 c2, c2);
11 printf ("Difference: %d\n",
12 diff);
13 return O;

Output:

cl: A (65)
c2: B (66)

Difference: 1
I

Explanation:

o ASCII: B(66) - A(65)

Prof. Jyotiprakash Mishra

@ Result: 1
@ Useful for char operations

C Programming: Deck 3

@ Both chars promoted to int

24 /40

Program 13: Overflow in Narrowing

1 #include <stdio.h>
4 int main0 { | vatme:zoo |
int i = 300; value 0

4 char c; value: 44

o ¢ = (char)i; As character: ,

6 printf("int value: %d\n", i);

1 printf ("char value: %d\n",

o Explanation:

printf ("As character: %c\n",

1 o) @ char range: -128 to 127

11 return 0;

@ 300 overflows

@ Wraps around: 300 % 256
— 44
@ Undefined behavior!

Prof. Jyotiprakash Mishra C Programming: Deck 3 25 /40

Program 14: Comparing Conv

P

#include <stdio.h>
int main() {
int i = 100;
float f = 3.14;
double d = 2.71828;
char ¢ = ’Z27;
printf ("Original values:\n");
printf("int: %d, float: %.2f, double: %.51f, char: %c\n\n",
printf ("Implicit conversions:\n");
printf ("int to float: %f\n", (float)i);
printf ("float to double: %.51f\n", (double)f);
printf ("char to int: %d\n", (int)c);
printf ("\nNarrowing conversions:\n");
printf ("double to int: %d\n", (int)d);
printf ("float to int: %d\n", (int)f);
printf ("int to char: %c\n", (char)i);
return 0;

i,

£,

d,

c);

otiprakash Mishra

26

Program 14: Output

Original values:
: 100, : 3.14, : 2.71828,

Implicit conversions:
to : 100.000000
to : 3.14000
to : 90

Narrowing conversions:
to : 2
to 3
to : d

Note: 100 in ASCIl = 'd’, showing potential unexpected results in
narrowing.

Prof. Jyotiprakash Mishra C Programming: Deck 3 27 /40

#include <stdio.h>
int main() {
float celsius = 25.0;
float fahrenheit;
fahrenheit =
(9.0/5.0) * celsius + 32;
printf ("Celsius: %.2f\n",
celsius);

printf ("Fahrenheit: %.2f\n",

fahrenheit);
return O;

Prof. Jyotiprakash Mishra

Program 15: Celsius to Fahrenheit

Output:

|
Celsius: 25.00
Fahrenheit: 77.00

Explanation:
@ Use 9.0 and 5.0 for float
division
@ Otherwise 9/5 = 1 (integer)
@ Correct formula application

C Programming: Deck 3 28 /40

Type Conversion Hierarchy

From To Result
char int Safe, widening
short int Safe, widening
int long | Safe, widening
int float | Safe, may lose precision
float | double | Safe, widening
double int Data loss, truncation
float int Data loss, truncation
int char | May overflow
long int May overflow

Prof. Jyotiprakash Mishra

C Programming: Deck 3

29 /40

When to Use Explicit Casting

Use explicit casting when:
© You want to make your intention clear
@ Converting from larger to smaller type
© Integer division but need float result
© Avoiding compiler warnings

© Working with different numeric types

Benefits:
@ Code is more readable
@ Intention is explicit
@ Avoids unexpected behavior

@ Suppresses compiler warnings (when appropriate)

Prof. Jyotiprakash Mishra C Programming: Deck 3 30/40

Common Mistakes - Integer Division

Problem:

@ Expecting decimal result from integer division

Wrong:

e float result = 5 / 2; — 2.0 (not 2.5!)

Correct:

5.0/ 2; —25
(float)5 / 2; — 25
5/ 2.0; =25

@ float result

@ float result

@ float result

Prof. Jyotiprakash Mishra C Programming: Deck 3

31/40

Common Mistakes - Truncation

Problem:

@ Assuming rounding instead of truncation

Examples:
@ (int)3.7 — 3, not 4
@ (int)9.99 — 9, not 10
e (int)-2.5 — -2, not -3

Remember:
@ Conversion truncates towards zero
@ Does NOT round to nearest integer

@ Use math functions for rounding

Prof. Jyotiprakash Mishra C Programming: Deck 3 32/40

Common Mistakes - Assignment Order

Problem:

@ Performing operation before casting

Wrong:
e float avg = (float)(a + b) / 2;
@ Parentheses cause integer division first

@ Then casts result to float

Correct:
e float avg = (float)(a + b) / 2.0;
e float avg = (a + b) / 2.0;

@ Cast one operand or use float literal

Prof. Jyotiprakash Mishra C Programming: Deck 3 33 /40

Common Mistakes - Overflow

Problem:
@ Value too large for target type

Examples:
@ char ¢ = 500; — Overflow
@ short s = 100000; — Overflow

Results:
@ Undefined behavior for signed types
@ Wraps around for unsigned types
@ Always check ranges!

Prof. Jyotiprakash Mishra C Programming: Deck 3 34 /40

Best Practices for Type Conversion

@ Be explicit - Use casts to show intention

@ Avoid narrowing - Only when necessary

© Check ranges - Ensure values fit in target type

© Use float literals - Write 3.0 instead of 3 for division
© Understand truncation - Know decimal parts are lost
© Watch for overflow - Especially with small types

@ Use parentheses - Make order of operations clear

© Test edge cases - Maximum and minimum values

Prof. Jyotiprakash Mishra C Programming: Deck 3 35 /40

Summary: Key Points

e Widening (small — large): Safe, automatic

e Narrowing (large — small): May lose data, needs casting
e Integer promotion: char/short promoted to int

@ Mixed arithmetic: Smaller type promoted to larger

o Integer division: Always truncates (not rounds)

o Explicit casting: Use (type) syntax

o Float division: At least one operand must be float

@ Truncation: Towards zero, not rounding

Prof. Jyotiprakash Mishra C Programming: Deck 3 36 /40

@ Write a program to divide two integers and get float result

@ Calculate percentage: (marks * 100) / total (avoid integer
division)

© Convert temperature from Fahrenheit to Celsius

© Demonstrate data loss when converting double to int

© Show difference between 5/2 and 5.0/2

@ Write a program showing char promotion in arithmetic

Prof. Jyotiprakash Mishra C Programming: Deck 3 37/40

Sample Solution: Integer to Float Division

1l #include <stdio.h>
2 int main() {
3 int a = 7, b = 3;
4 float result;
5 result = (float)a / b;
printf ("%d / %d = %f\n",
7 a, b, result);
9 return O;
}

Output:

Prof. Jyotiprakash Mishra

C Programming: Deck 3

[
7 / 3 = 2.333333

38/ 40

Sample Solution: Percentage Calculation

#include <stdio.h>
int main() {

int marks = 85;
int total = 100;
float percentage;
percentage =

(marks * 100.0) / total;
printf ("Marks: %d/%d\n",
marks, total);
printf ("Percentage: %.2f%%\n",
percentage) ;
return 0;

Prof. Jyotiprakash Mishra

85/100

Percentage:

85.

39 /40

End of Deck 3

Questions?

Next: Deck 4 - Operators

Prof. Jyotiprakash Mishra C Programming: Deck 3

	Introduction to Type Conversion
	Implicit Type Conversion (Widening)
	Explicit Type Conversion (Casting)
	Integer Promotion
	Conversion in Expressions
	Program Examples
	Conversion Rules Summary
	Common Pitfalls
	Best Practices
	Practice Exercises

