
C Programming: Deck 4
Operators

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming: Deck 4 1 / 39

Topics Covered

1 Introduction to Operators

2 Arithmetic Operators

3 Increment and Decrement Operators

4 Relational Operators

5 Logical Operators

6 Assignment Operators

7 Bitwise Operators

8 Special Operators

9 Operator Precedence & Associativity

10 Summary & Best Practices

11 Practice Exercises

Prof. Jyotiprakash Mishra C Programming: Deck 4 2 / 39

What are Operators?

Symbols that perform operations on operands

Operands can be variables, constants, or expressions

Essential for computations and logic

Different operators for different purposes

Categories of Operators in C:
1 Arithmetic Operators

2 Relational Operators

3 Logical Operators

4 Bitwise Operators

5 Assignment Operators

6 Increment/Decrement Operators

7 Special Operators

Prof. Jyotiprakash Mishra C Programming: Deck 4 3 / 39

Arithmetic Operators

Operator Name Example
+ Addition a + b

- Subtraction a - b

* Multiplication a * b

/ Division a / b

% Modulus (Remainder) a % b

Notes:

All work on numeric types

Division: Integer division truncates

Modulus: Works only with integers

Modulus: Returns remainder of division

Prof. Jyotiprakash Mishra C Programming: Deck 4 4 / 39

Program 1: Basic Arithmetic Operations

1 #include <stdio.h>

2 int main() {

3 int a = 20, b = 6;

4 printf("a = %d, b = %d\n", a, b);

5 printf("Addition: %d\n", a + b);

6 printf("Subtraction: %d\n", a - b);

7 printf("Multiplication: %d\n", a * b);

8 printf("Division: %d\n", a / b);

9 printf("Modulus: %d\n", a % b);

10 return 0;

11 }

Output:
a = 20, b = 6

Addition: 26

Subtraction: 14

Multiplication: 120

Division: 3

Modulus: 2

Note:

20/6 = 3 (integer division)

20%6 = 2 (remainder)

Prof. Jyotiprakash Mishra C Programming: Deck 4 5 / 39

Program 2: Integer vs Float Division

1 #include <stdio.h>

2 int main() {

3 int a = 7, b = 2;

4 float c = 7.0, d = 2.0;

5 printf("Integer division :\n");

6 printf("%d / %d = %d\n", a, b, a/b);

7 printf("\nFloat division :\n");

8 printf("%.1f / %.1f = %.2f\n",

9 c, d, c/d);

10 printf("\nMixed :\n");

11 printf("%d / %.1f = %.2f\n",

12 a, d, a/d);

13 return 0;

14 }

Output:
Integer division:

7 / 2 = 3

Float division:

7.0 / 2.0 = 3.50

Mixed:

7 / 2.0 = 3.50

Key Point:

At least one float = float
result

Prof. Jyotiprakash Mishra C Programming: Deck 4 6 / 39

Program 3: Modulus Operator Examples

1 #include <stdio.h>

2 int main() {

3 printf("Positive modulus :\n");

4 printf("10 %% 3 = %d\n", 10 % 3);

5 printf("15 %% 4 = %d\n", 15 % 4);

6 printf("\nNegative modulus :\n");

7 printf(" -10 %% 3 = %d\n", -10 % 3);

8 printf("10 %% -3 = %d\n", 10 % -3);

9 printf("\nEven/Odd check:\n");

10 printf("7 %% 2 = %d (odd)\n", 7%2);

11 printf("8 %% 2 = %d (even)\n", 8%2);

12 return 0;

13 }

Output:
Positive modulus:

10 % 3 = 1

15 % 4 = 3

Negative modulus:

-10 % 3 = -1

10 % -3 = 1

Even/Odd check:

7 % 2 = 1 (odd)

8 % 2 = 0 (even)

Use: Check divisibility

Prof. Jyotiprakash Mishra C Programming: Deck 4 7 / 39

Increment and Decrement Operators

Operator Name Description
++ Increment Increase by 1
-- Decrement Decrease by 1

Two Forms:

Prefix: ++x, --x (increment/decrement first, then use)

Postfix: x++, x-- (use first, then increment/decrement)

Key Difference:

Prefix: Returns new value

Postfix: Returns old value

Prof. Jyotiprakash Mishra C Programming: Deck 4 8 / 39

Program 4: Pre vs Post Increment

1 #include <stdio.h>

2 int main() {

3 int x = 5, y = 5;

4 printf("Initial: x=%d, y=%d\n",

5 x, y);

6 printf("\nPrefix ++x:\n");

7 printf("Value: %d\n", ++x);

8 printf("After: x=%d\n", x);

9 printf("\nPostfix y++:\n");

10 printf("Value: %d\n", y++);

11 printf("After: y=%d\n", y);

12 return 0;

13 }

Output:
Initial: x=5, y=5

Prefix ++x:

Value: 6

After: x=6

Postfix y++:

Value: 5

After: y=6

Observation:

Prefix returns 6

Postfix returns 5

Both end up as 6

Prof. Jyotiprakash Mishra C Programming: Deck 4 9 / 39

Program 5: Increment in Expressions

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 10;

4 int result1 , result2;

5 result1 = ++a + 5;

6 printf("++a + 5:\n");

7 printf("a=%d, result =%d\n",

8 a, result1);

9 result2 = b++ + 5;

10 printf("\nb++ + 5:\n");

11 printf("b=%d, result =%d\n",

12 b, result2);

13 return 0;

14 }

Output:
++a + 5:

a=11, result =16

b++ + 5:

b=11, result =15

Explanation:

++a: a becomes 11, then
11+5=16

b++: uses 10, then b
becomes 11

Result: 10+5=15

Prof. Jyotiprakash Mishra C Programming: Deck 4 10 / 39

Program 6: Decrement Operators

1 #include <stdio.h>

2 int main() {

3 int x = 10, y = 10;

4 printf("Initial: x=%d, y=%d\n",

5 x, y);

6 printf("Prefix --x: %d\n", --x);

7 printf("After: x=%d\n", x);

8 printf("Postfix y--: %d\n", y--);

9 printf("After: y=%d\n", y);

10 printf("\nMultiple ops:\n");

11 printf("--x: %d\n", --x);

12 printf("--x: %d\n", --x);

13 return 0;

14 }

Output:
Initial: x=10, y=10

Prefix --x: 9

After: x=9

Postfix y--: 10

After: y=9

Multiple ops:

--x: 8

--x: 7

Prof. Jyotiprakash Mishra C Programming: Deck 4 11 / 39

Relational Operators

Operator Name Example
== Equal to a == b

!= Not equal to a != b

> Greater than a > b

< Less than a < b

>= Greater than or equal a >= b

<= Less than or equal a <= b

Return Value:

1 if condition is true

0 if condition is false

Important: == (comparison) vs = (assignment)

Prof. Jyotiprakash Mishra C Programming: Deck 4 12 / 39

Program 7: Relational Operators

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 20;

4 printf("a = %d, b = %d\n", a, b);

5 printf("\nRelational Results :\n");

6 printf("a == b: %d\n", a == b);

7 printf("a != b: %d\n", a != b);

8 printf("a > b: %d\n", a > b);

9 printf("a < b: %d\n", a < b);

10 printf("a >= b: %d\n", a >= b);

11 printf("a <= b: %d\n", a <= b);

12 return 0;

13 }

Output:
a = 10, b = 20

Relational Results:

a == b: 0

a != b: 1

a > b: 0

a < b: 1

a >= b: 0

a <= b: 1

Note:

1 = true, 0 = false

Prof. Jyotiprakash Mishra C Programming: Deck 4 13 / 39

Program 8: Using Relational in Conditions

1 #include <stdio.h>

2 int main() {

3 int age = 18;

4 printf("Age: %d\n", age);

5 if (age >= 18) {

6 printf("Adult\n");

7 } else {

8 printf("Minor\n");

9 }

10 int marks = 85;

11 printf("\nMarks: %d\n", marks);

12 if (marks >= 90) {

13 printf("Grade: A\n");

14 } else if (marks >= 75) {

15 printf("Grade: B\n");

16 } else {

17 printf("Grade: C\n");

18 }

19 return 0;

20 }

Output:
Age: 18

Adult

Marks: 85

Grade: B

Prof. Jyotiprakash Mishra C Programming: Deck 4 14 / 39

Logical Operators

Operator Name Description
&& Logical AND Both conditions true
|| Logical OR At least one true
! Logical NOT Negation

Truth Tables:

AND (&&):
A B A&&B
0 0 0
0 1 0
1 0 0
1 1 1

OR (——):
A B A——B
0 0 0
0 1 1
1 0 1
1 1 1

NOT (!):
A !A
0 1
1 0

Prof. Jyotiprakash Mishra C Programming: Deck 4 15 / 39

Program 9: Logical AND Operator

1 #include <stdio.h>

2 int main() {

3 int a = 1, b = 0;

4 printf("a=%d, b=%d\n", a, b);

5 printf("\nLogical AND:\n");

6 printf("a && a: %d\n", a && a);

7 printf("a && b: %d\n", a && b);

8 printf("b && b: %d\n", b && b);

9 printf("\nPractical use:\n");

10 int age = 25;

11 int hasLicense = 1;

12 if (age >= 18 && hasLicense) {

13 printf("Can drive\n");

14 }

15 return 0;

16 }

Output:
a=1, b=0

Logical AND:

a && a: 1

a && b: 0

b && b: 0

Practical use:

Can drive

Note:

Both must be true

Prof. Jyotiprakash Mishra C Programming: Deck 4 16 / 39

Program 10: Logical OR Operator

1 #include <stdio.h>

2 int main() {

3 int a = 1, b = 0;

4 printf("a=%d, b=%d\n", a, b);

5 printf("\nLogical OR:\n");

6 printf("a || a: %d\n", a || a);

7 printf("a || b: %d\n", a || b);

8 printf("b || b: %d\n", b || b);

9 printf("\nPractical use:\n");

10 char grade = ’A’;

11 if (grade==’A’ || grade ==’B’) {

12 printf("Pass with honors\n");

13 }

14 return 0;

15 }

Output:
a=1, b=0

Logical OR:

a || a: 1

a || b: 1

b || b: 0

Practical use:

Pass with honors

Note:

At least one must be true

Prof. Jyotiprakash Mishra C Programming: Deck 4 17 / 39

Program 11: Logical NOT Operator

1 #include <stdio.h>

2 int main() {

3 int a = 1, b = 0;

4 printf("a=%d, b=%d\n", a, b);

5 printf("\nLogical NOT:\n");

6 printf("!a: %d\n", !a);

7 printf("!b: %d\n", !b);

8 printf("!!a: %d\n", !!a);

9 printf("\nPractical use:\n");

10 int isRaining = 0;

11 if (! isRaining) {

12 printf("Go outside\n");

13 }

14 return 0;

15 }

Output:
a=1, b=0

Logical NOT:

!a: 0

!b: 1

!!a: 1

Practical use:

Go outside

Note:

Reverses truth value

!! returns to original

Prof. Jyotiprakash Mishra C Programming: Deck 4 18 / 39

Program 12: Combined Logical Operators

1 #include <stdio.h>

2 int main() {

3 int age = 25;

4 int citizen = 1;

5 int criminalRecord = 0;

6 printf("Age: %d\n", age);

7 printf("Citizen: %d\n", citizen);

8 printf("Criminal: %d\n\n",

9 criminalRecord);

10 if (age >=18 && citizen &&

11 !criminalRecord) {

12 printf("Eligible to vote\n");

13 }

14 return 0;

15 }

Output:
Age: 25

Citizen: 1

Criminal: 0

Eligible to vote

Explanation:

All conditions must be true

age≥18: true

citizen: true

!criminalRecord: true

Prof. Jyotiprakash Mishra C Programming: Deck 4 19 / 39

Assignment Operators

Operator Example Equivalent to
= a = 5 Simple assignment
+= a += 5 a = a + 5

-= a -= 5 a = a - 5

*= a *= 5 a = a * 5

/= a /= 5 a = a / 5

%= a %= 5 a = a % 5

Benefits:

Shorter syntax

More readable

Commonly used in loops and counters

Prof. Jyotiprakash Mishra C Programming: Deck 4 20 / 39

Program 13: Compound Assignment Operators

1 #include <stdio.h>

2 int main() {

3 int x = 10;

4 printf("Initial: x = %d\n", x);

5 x += 5;

6 printf("After x+=5: %d\n", x);

7 x -= 3;

8 printf("After x-=3: %d\n", x);

9 x *= 2;

10 printf("After x*=2: %d\n", x);

11 x /= 4;

12 printf("After x/=4: %d\n", x);

13 x %= 5;

14 printf("After x%%=5: %d\n", x);

15 return 0;

16 }

Output:
Initial: x = 10

After x+=5: 15

After x-=3: 12

After x*=2: 24

After x/=4: 6

After x%=5: 1

Trace:

10+5=15

15-3=12

12*2=24

24/4=6

6%5=1

Prof. Jyotiprakash Mishra C Programming: Deck 4 21 / 39

Bitwise Operators

Operator Name Description
& Bitwise AND Bit-by-bit AND
| Bitwise OR Bit-by-bit OR
^ Bitwise XOR Bit-by-bit XOR
~ Bitwise NOT Bit complement
<< Left shift Shift bits left
>> Right shift Shift bits right

Used for:

Low-level programming

Bit manipulation

Flags and masks

Performance optimization

Prof. Jyotiprakash Mishra C Programming: Deck 4 22 / 39

Program 14: Bitwise AND, OR, XOR

1 #include <stdio.h>

2 int main() {

3 int a = 12; // 1100 binary

4 int b = 10; // 1010 binary

5 printf("a = %d (binary: 1100)\n",a);

6 printf("b = %d (binary: 1010)\n",b);

7 printf("\nBitwise operations :\n");

8 printf("a & b = %d\n", a & b);

9 printf("a | b = %d\n", a | b);

10 printf("a ^ b = %d\n", a ^ b);

11 printf("~a = %d\n", ~a);

12 return 0;

13 }

Output:
a = 12 (binary: 1100)

b = 10 (binary: 1010)

Bitwise operations:

a & b = 8

a | b = 14

a ^ b = 6

~a = -13

Binary:

AND: 1000 = 8

OR: 1110 = 14

XOR: 0110 = 6

Prof. Jyotiprakash Mishra C Programming: Deck 4 23 / 39

Program 15: Bit Shift Operators

1 #include <stdio.h>

2 int main() {

3 int x = 5; // 0101 binary

4 printf("x = %d (binary: 0101)\n",x);

5 printf("\nLeft shift:\n");

6 printf("x << 1 = %d\n", x << 1);

7 printf("x << 2 = %d\n", x << 2);

8 printf("\nRight shift :\n");

9 int y = 20; // 10100 binary

10 printf("y = %d\n", y);

11 printf("y >> 1 = %d\n", y >> 1);

12 printf("y >> 2 = %d\n", y >> 2);

13 return 0;

14 }

Output:
x = 5 (binary: 0101)

Left shift:

x << 1 = 10

x << 2 = 20

Right shift:

y = 20

y >> 1 = 10

y >> 2 = 5

Pattern:

Left shift: multiply by 2

Right shift: divide by 2

Prof. Jyotiprakash Mishra C Programming: Deck 4 24 / 39

Program 16: Practical Bitwise - Even/Odd

1 #include <stdio.h>

2 int main() {

3 int nums[] = {5, 8, 13, 20, 7};

4 int i;

5 printf("Check even/odd using &:\n");

6 for (i = 0; i < 5; i++) {

7 if (nums[i] & 1) {

8 printf("%d is odd\n", nums[i]);

9 } else {

10 printf("%d is even\n",nums[i]);

11 }

12 }

13 return 0;

14 }

Output:
Check even/odd using &:

5 is odd

8 is even

13 is odd

20 is even

7 is odd

Trick:

LSB of odd numbers is 1

n & 1 checks last bit

Prof. Jyotiprakash Mishra C Programming: Deck 4 25 / 39

Special Operators

Operator Name Example
sizeof Size of sizeof(int)

? : Ternary/Conditional a > b ? a : b

, Comma a = 1, b = 2

& Address of &x

* Pointer dereference *ptr

Note: We’ll focus on sizeof and ternary operator here

Prof. Jyotiprakash Mishra C Programming: Deck 4 26 / 39

Program 17: sizeof Operator

1 #include <stdio.h>

2 int main() {

3 int x = 10;

4 float f = 3.14;

5 char c = ’A’;

6 int arr [10];

7 printf("sizeof data types :\n");

8 printf("int: %lu bytes\n",

9 sizeof(int));

10 printf("float: %lu bytes\n",

11 sizeof(float));

12 printf("char: %lu bytes\n",

13 sizeof(char));

14 printf("\nsizeof variables :\n");

15 printf("x: %lu bytes\n", sizeof(x));

16 printf("arr: %lu bytes\n",

17 sizeof(arr));

18 return 0;

19 }

Output:
sizeof data types:

int: 4 bytes

float: 4 bytes

char: 1 bytes

sizeof variables:

x: 4 bytes

arr: 40 bytes

Note:

Array: 10 × 4 = 40 bytes

Prof. Jyotiprakash Mishra C Programming: Deck 4 27 / 39

Ternary/Conditional Operator

Syntax:

condition ? expression1 : expression2

How it works:

If condition is true, returns expression1

If condition is false, returns expression2

Compact alternative to if-else

Example:

max = (a > b) ? a : b;

If a ¿ b, max = a, else max = b

Prof. Jyotiprakash Mishra C Programming: Deck 4 28 / 39

Program 18: Ternary Operator

1 #include <stdio.h>

2 int main() {

3 int a = 10, b = 20;

4 int max , min;

5 max = (a > b) ? a : b;

6 min = (a < b) ? a : b;

7 printf("a=%d, b=%d\n", a, b);

8 printf("Max: %d\n", max);

9 printf("Min: %d\n", min);

10 int num = 7;

11 printf("\n%d is %s\n", num ,

12 (num %2==0) ? "even":"odd");

13 int age = 20;

14 printf("Age %d: %s\n", age ,

15 (age >=18) ? "Adult":"Minor");

16 return 0;

17 }

Output:
a=10, b=20

Max: 20

Min: 10

7 is odd

Age 20: Adult

Uses:

Finding max/min

Simple conditions

Inline decisions

Prof. Jyotiprakash Mishra C Programming: Deck 4 29 / 39

Program 19: Nested Ternary

1 #include <stdio.h>

2 int main() {

3 int marks = 85;

4 char grade;

5 grade = (marks >= 90) ? ’A’ :

6 (marks >= 75) ? ’B’ :

7 (marks >= 60) ? ’C’ :

8 (marks >= 50) ? ’D’ : ’F’;

9 printf("Marks: %d\n", marks);

10 printf("Grade: %c\n", grade);

11 int x = 5, y = 10, z = 3;

12 int largest;

13 largest = (x>y) ?

14 ((x>z)?x:z) :

15 ((y>z)?y:z);

16 printf("\nLargest of %d,%d,%d: %d\n",

17 x, y, z, largest);

18 return 0;

19 }

Output:
Marks: 85

Grade: B

Largest of 5,10,3: 10

Warning:

Can get complex

Use parentheses

Consider if-else for clarity

Prof. Jyotiprakash Mishra C Programming: Deck 4 30 / 39

Operator Precedence (Partial List)

Priority Operators Associativity
1 (Highest) () [] -> . Left to Right

2 ! ~ ++ -- + - * & sizeof Right to Left
3 * / % Left to Right
4 + - Left to Right
5 << >> Left to Right
6 < <= > >= Left to Right
7 == != Left to Right
8 & Left to Right
9 ^ Left to Right
10 | Left to Right
11 && Left to Right
12 || Left to Right
13 ? : Right to Left

14 (Lowest) = += -= *= /= %= Right to Left

Prof. Jyotiprakash Mishra C Programming: Deck 4 31 / 39

Program 20: Precedence Example

1 #include <stdio.h>

2 int main() {

3 int result;

4 result = 2 + 3 * 4;

5 printf("2+3*4 = %d\n", result);

6 result = (2 + 3) * 4;

7 printf("(2+3)*4 = %d\n", result);

8 result = 10 - 3 + 2;

9 printf("10-3+2 = %d\n", result);

10 result = 10 / 2 * 3;

11 printf("10/2*3 = %d\n", result);

12 result = 10 < 20 && 5 > 3;

13 printf("10<20 && 5>3 = %d\n",

14 result);

15 return 0;

16 }

Output:
2+3*4 = 14

(2+3)*4 = 20

10-3+2 = 9

10/2*3 = 15

10<20 && 5>3 = 1

Explanation:

* before +

() highest precedence

Left-to-right: 10-3=7,
7+2=9

Left-to-right: 10/2=5,
5*3=15

Prof. Jyotiprakash Mishra C Programming: Deck 4 32 / 39

Program 21: Complex Expression

1 #include <stdio.h>

2 int main() {

3 int a=5, b=10, c=15;

4 int result;

5 result = a + b * c / 5 - 2;

6 printf("a=%d, b=%d, c=%d\n",

7 a, b, c);

8 printf("\na+b*c/5-2\n");

9 printf("Step by step:\n");

10 printf("b*c = %d\n", b*c);

11 printf("150/5 = %d\n", 150/5);

12 printf("a+30 = %d\n", a+30);

13 printf("35-2 = %d\n", 35-2);

14 printf("\nFinal result: %d\n",

15 result);

16 return 0;

17 }

Output:
a=5, b=10, c=15

a+b*c/5-2

Step by step:

b*c = 150

150/5 = 30

a+30 = 35

35-2 = 33

Final result: 33

Order:

*, / (left-to-right)

+, - (left-to-right)

Prof. Jyotiprakash Mishra C Programming: Deck 4 33 / 39

Operators Summary

Arithmetic: +, -, *, /, %

Relational: ==, !=, ¡, ¿, ¡=, ¿=

Logical: &&, ——, !

Bitwise: &, —, ˆ, ˜, ¡¡, ¿¿

Assignment: =, +=, -=, *=, /=, %=

Inc/Dec: ++, –

Special: sizeof, ? :

Prof. Jyotiprakash Mishra C Programming: Deck 4 34 / 39

Best Practices

1 Use parentheses for clarity

2 Understand precedence and associativity

3 Be careful with ++ and – in expressions

4 Use compound assignments for readability

5 Remember integer division truncates

6 Check types before using modulus

7 Use relational operators in conditions

8 Ternary for simple conditions only

9 Comment complex expressions

Prof. Jyotiprakash Mishra C Programming: Deck 4 35 / 39

Common Mistakes

1 Using = instead of == in conditions

if (x = 5) assigns, doesn’t compare!

2 Confusing && (logical) with & (bitwise)
3 Forgetting integer division

5/2 is 2, not 2.5

4 Modulus with floats (not allowed)

5 Complex nested ternary operators

6 Not using parentheses in complex expressions

Prof. Jyotiprakash Mishra C Programming: Deck 4 36 / 39

Try These!

1 Write expressions using all arithmetic operators

2 Swap two numbers using compound assignment

3 Check if a number is divisible by both 3 and 5

4 Find maximum of three numbers using ternary

5 Use bitwise operators to multiply/divide by powers of 2

6 Write complex expression and trace evaluation order

Prof. Jyotiprakash Mishra C Programming: Deck 4 37 / 39

Sample: Max of Three Using Ternary

1 #include <stdio.h>

2 int main() {

3 int a=15, b=25, c=20;

4 int max;

5 max = (a>b) ?

6 ((a>c) ? a : c) :

7 ((b>c) ? b : c);

8 printf("Numbers: %d,%d,%d\n",

9 a, b, c);

10 printf("Maximum: %d\n", max);

11 return 0;

12 }

Output:
Numbers: 15,25,20

Maximum: 25

Prof. Jyotiprakash Mishra C Programming: Deck 4 38 / 39

End of Deck 4

Questions? Next: Deck 5 - Operator Precedence & Associativity

(Detailed)

Prof. Jyotiprakash Mishra C Programming: Deck 4 39 / 39

	Introduction to Operators
	Arithmetic Operators
	Increment and Decrement Operators
	Relational Operators
	Logical Operators
	Assignment Operators
	Bitwise Operators
	Special Operators
	Operator Precedence & Associativity
	Summary & Best Practices
	Practice Exercises

