C Programming: Deck 4

Operators

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming: Deck 4 1/39

Topics Covered

@ Introduction to Operators

@ Arithmetic Operators

© Increment and Decrement Operators
@ Relational Operators

© Logical Operators

@ Assignment Operators

@ Bitwise Operators

© Special Operators

© Operator Precedence & Associativity
@ Summary & Best Practices

@ Practice Exercises

Prof. Jyotiprakash Mishra C Programming: Deck 4

What are Operators?

@ Symbols that perform operations on operands

@ Operands can be variables, constants, or expressions
@ Essential for computations and logic

o Different operators for different purposes

Categories of Operators in C:
Arithmetic Operators

Relational Operators

Logical Operators

Bitwise Operators

Assignment Operators
Increment/Decrement Operators

000000

Special Operators

Prof. Jyotiprakash Mishra C Programming: Deck 4 3/39

Arithmetic Operators

Operator | Name Example
+ Addition a+b
- Subtraction a-b
* Multiplication ax*xb
/ Division a/b
% Modulus (Remainder) | a % b

Notes:
@ All work on numeric types
@ Division: Integer division truncates
@ Modulus: Works only with integers

@ Modulus: Returns remainder of division

Prof. Jyotiprakash Mishra C Programming: Deck 4 4/39

=

Program 1: Basic Arithmetic Operations

3]

2O © o~

#include <stdio.h>
int main() {
int a = 20, b = 6;

printf("a = %d, b = %d\n", a, b);
printf ("Addition: %d\n", a + b);
printf ("Subtraction: %d\n", a - b);
printf ("Multiplication: %d\n", a * b);
printf ("Division: %d\n", a / b);
printf ("Modulus: %d\n", a % b);
return O0;

}

20,
Addition: 26

Subtraction: 14
Multiplication: 120
Division: 3
Modulus: 2

Note:
@ 20/6 = 3 (integer division)
@ 20%6 = 2 (remainder)

Prof. Jyotiprakash Mishra C Programming: Deck 4 5/39

1]

#include <stdio.h>
int main() {
int a =7, b = 2;

float ¢ = 7.0, d = 2.0;

printf ("Integer division:\n");

printf("%d / %d = %d\n", a, b, a/b);

printf ("\nFloat division:\n");

printf ("%.1f / %.1f = .2f\n",
c, d, c/d);

printf ("\nMixed:\n");

printf("%d / %.1f = %.2f\n",
a, d, a/d);

return O;

}

Prof. Jyotiprakash Mishra

Program 2: Integer vs Float Division

Integer division:
7/ 2=23

Float division:
7.0 / 2.0 = 3.50
Mixed:

7/ 2.0 = 3.50

Key Point:

@ At least one float = float
result

6/39

Program 3: Modulus Operator Examples

#include <stdio.h>

int main() {
printf ("Positive modulus:\n");
printf ("10 %% 3 = %d\n", 10 % 3);
printf ("15 %% 4 = %d\n", 15 % 4)
printf ("\nNegative modulus:\n");
printf ("-10 %% 3 = %d\n", -10 % 3);
printf ("10 %% -3 = %d\n", 10 % -3);
printf ("\nEven/0dd check:\n");
printf ("7 %% 2 = %d (odd)\n", T7%2);
printf ("8 %% 2 = %d (even)\n", 8%2);
return O;

}

Prof.

yotiprakash Mishra

Positive modulus:
10 % 3 =1

% 4 =3
Negative modulus:

-10 % 3 = -1

10 4 -3 = 1

Even/0dd check:
= 1 (odd)
= 0 (even)

Use: Check divisibility

C Programming: Deck 4

7/39

Increment and Decrement Operators

Operator | Name Description
++ Increment | Increase by 1
- Decrement | Decrease by 1

Two Forms:
o Prefix: ++x, ——x (increment/decrement first, then use)

o Postfix: x++, x—- (use first, then increment/decrement)

Key Difference:
@ Prefix: Returns new value

@ Postfix: Returns old value

Prof. Jyotiprakash Mishra C Programming: Deck 4 8/39

Program 4: Pre vs Post Increment

#include <stdio.h>

int main() {
int x = 5, y = 5;
printf ("Initial: x=%d, y=%d\n",

X, ¥);

printf ("\nPrefix ++x:\n");
printf ("Value: %d\n", ++x);
printf ("After: x=%d\n", x);
printf ("\nPostfix y++:\n");
printf ("Value: %d\n", y++);
printf ("After: y=%d\n", y);
return O;

}

Prof. Jyotiprakash Mishra

Initia
Prefix ++
Value: 6
After: x=6
Postfix y++:
Value: 5
After: y=6

Observation:
@ Prefix returns 6
@ Postfix returns 5

@ Both end up as 6

9/39

Program 5: Increment in

#include <stdio.h>
int main() {
int a = 10, b = 10;
int resultl, result2;
resultl = ++a + 5;
printf ("++a + 5:\n");
printf ("a=%d, result=%d\n",
a, resultl);
result2 = b++ + 5;
printf ("\nb++ + 5:\n");
printf ("b=%d, result=%d\n",
b, result2);
return 0;

Expressions

++a + b5:

a=11, result=16
b++ + 5:
b=11, result=15

Explanation:

@ ++a: a becomes 11, then
11+5=16

@ b++: uses 10, then b
becomes 11

@ Result: 104+5=15

Prof. Jyotiprakash Mishra C Programming: Deck 4

10/39

Program 6: Decrement Operators

1 #include <stdio.h>
int main() {

3 int x = 10, y = 10; Init%al:

4 printf("Initial: x=%d, y=%d\n", Prefix

B X, ¥); After:
printf ("Prefix --x: %d\n", --x); Postfix y

7 printf ("After: x=%d\n", x); After: y=9

g printf("Postfix y--: %d\n", y--); Multiple ops:

9 printf ("After: y=%d\n", y); --x: 8

10 printf("\nMultiple ops:\n"); ==%8 W
11) printf ("--x: %d\n", --x);
12 printf ("--x: %d\n", --x);
1 return O;

yotiprakash Mishra 11/39

Relational Operators

Operator | Name Example
== Equal to a ==
I= Not equal to al=»b
> Greater than a>b
< Less than a= Greater than or equal | a >= b
<= Less than or equal a<=b

Return Value:
@ 1 if condition is true

@ 0 if condition is false
Important: == (comparison) vs = (assignment)

Prof. Jyotiprakash Mishra C Programming: Deck 4 12 /39

Program 7: Relational Operators

#include <stdio.h>

int main() {
int a = 10, b = 20;
printf("a = %d, b = %d\n", a, b);
printf ("\nRelational Results:\n");
printf("a == b: %d\n", a == b);
printf("a != b: %d\n", a != b);
printf("a > b: %d\n", a > b);
printf("a < b: %d\n", a < b);
printf("a >= b: %d\n", a >= b);
printf("a <= b: %d\n", a <= b);
return O;

}

yotiprakash Mishra

Note:

@ 1 = true, 0 = false

13/39

Program 8: Using Relational in Conditions

#include <stdio.h> Output:

1
2 int main() {
3 int age = 18;
4 printf("Age: %d\n", age);
5 if (age >= 18) {
printf ("Adult\n");
71 ¥ else {
printf ("Minor\n");

1 int marks = 85;
11| printf ("\nMarks: %d\n", marks);
12 if (marks >= 90) {

1 printf ("Grade: A\n");
14} else if (marks >= 75) {
15 printf ("Grade: B\n");

1 } else {

17 printf ("Grade: C\n");
19 }

19 return O;

200 ¥

14 /39

yotiprakash Mishra

Logical Operators

Operator

Name Description

&&
I

Logical AND | Both conditions true
Logical OR | At least one true
Logical NOT | Negation

Truth Tables:
AND (&&):

A A&&B
0

= = O O
= O = Ol

0
0
1

Prof. Jyotiprakash Mishra

OR (—):
A B[A—B NOT():
0 O 0
0 1 1
1 0 1
11 1

C Programming: Deck 4

15 /39

Program 9: Logical AND Operator

1) #include <stdio.h>
2 int main() {
int a = 1, b = 0; a=il, =0

4 printf ("a=%d, b=%d\n", a, b); Logical AND:

5 printf("\nLogical AND:\n"); 2 & as d
printf("a && a: %d\n", a && a); a && b: 0

7 printf("a && b: %d\n", a && b); b && b 0
printf("b && b: %d\n", b && b); PrEcHIcCal THo8

9 printf("\nPractical use:\n"); Can drive

10 int age = 25;

17 int hasLicense = 1;

12 if (age >= 18 && hasLicense) { NOte:

13 printf ("Can drive\n");

14 3 @ Both must be true

15 return O;

14

yotiprakash Mishra

16 /39

Program 10: Logical OR Operator

Ol WA

#include <stdio.h>

int main() {
int a =1, b = 0;
printf ("a=%d, b=%d\n", a, b);
printf ("\nLogical OR:\n");
printf("a || a: %d\n", a || a);
printf("a || b: %d\n", a || b);
printf("b || b: %d\n", b || b);
printf ("\nPractical use:\n");
char grade = ’A’;
if (grade=="A’ || grade==’B’) {

printf ("Pass with honors\n");

¥
return 0;

¥

Prof. Jyotiprakash Mishra

a=1, b=0

Logical OR:

a ||l a: 1

a ||l b: 1

b Il b: 0
Practical use:
Pass with honors

Note:

@ At least one must be true

17 /39

Program 11: Logical NOT Operator

Ol W N

1
12
13

15

#include <stdio.h>

int main() {
int a =1, b = 0;
printf ("a=%d, b=%d\n", a, b);
printf ("\nLogical NOT:\n");
printf("'a: %d\n", l!a);
printf ("!b: %d\n", !b);
printf("!la: %d\a", !la);
printf ("\nPractical use:\n");
int isRaining = 0;
if (!isRaining) {

printf ("Go outside\n");

¥

return 0;

a=1, b=0
Logical NOT:
ta: 0

igg il

a1
Practical use:
Go outside

Note:

@ Reverses truth value

Prof. Jyotiprakash Mishra

@ !l returns to original

C Programming: Deck 4

18/39

Program 12: Combined Logical Operators

1l #include <stdio.h>
2 int main() {
3 int age = 25; Age: 25

8 Citizen: 1
4 ilg
5 Criminal: O
Eligible to vote

int citizen =
int criminalRecord = 0;

printf ("Age: %d\n", age);

7 printf ("Citizen: %d\n", citizen);

g printf ("Criminal: %d\n\n", . R

9 criminalRecord); EXplanatIOI’l.

1 if (age>=18 && citizen &&

1 leriminalRecord) { @ All conditions must be true
12 printf ("Eligible to vote\n");

1 }

14 return 0; o ageZ].S true

15 ¥

@ citizen: true

@ lcriminalRecord: true

Prof. Jyotiprakash Mishra C Programming: Deck 4 19 /39

Assignment Operators

Operator | Example | Equivalent to
= a=>5 Simple assignment
+= a+=5 a=a+b5
-= a-=>5 a=a-b>
*= a x= b a=axb5H
/= a /=5 a=a/b5
= a%=>5 a=a%b

Benefits:
@ Shorter syntax
@ More readable

@ Commonly used in loops and counters

Prof. Jyotiprakash Mishra C Programming: Deck 4 20/39

Program 13: Compound Assignment Operators

#include <stdio.h>
int main() {
int x = 10;
printf ("Initial: x =
x += 5;
printf ("After x+=5:
x -= 3;
printf ("After x-=3:
X k= 2;
printf ("After xx=2:
x /= 4;
printf ("After x/=4:
x %= 5;
printf ("After x%%=5:
return 0;

%d\n", x);
%d\n", x);
%d\n", x);
%d\n", x);
%d\n", x);

%d\n", x);

After

After
After x
After x
After xJ

Trace:
10+5=15
15-3=12

Prof. Jyotiprakash Mishra

12%2=24
24 /4=6
6%5=1

C Programming: Deck 4

Initial:

21/39

Bitwise Operators

Operator | Name Description
& Bitwise AND | Bit-by-bit AND
| Bitwise OR | Bit-by-bit OR
- Bitwise XOR | Bit-by-bit XOR
~ Bitwise NOT | Bit complement
<< Left shift Shift bits left
>> Right shift Shift bits right

Used for:

Low-level programming

@ Bit manipulation
o Flags and masks
°

Performance optimization

Prof. Jyotiprakash Mishra C Programming: Deck 4 22/39

#include <stdio.h>

int main() {
int a = 12; // 1100 binary
int b = 10; // 1010 binary
printf("a = %d (binary: 1100)\n",a);
printf ("b = %d (binary: 1010)\n",b);
printf ("\nBitwise operations:\n");
printf("a & b = %d\n", a & Db);
printf("a | b = %d\n", a | b);
printf("a -~ b = %d\n", a ~ b);
printf("~a = %d\n", ~a);
return O;

}

Prof. Jyotiprakash Mishra

Program 14: Bitwise AND, OR, XOR

12 (binary: 1100)
10 (binary: 1010)
wise operations:
8

b
b 14
b 6

Binary:
e AND: 1000 = 8
e OR: 1110 = 14
e XOR: 0110 =6

C Programming: Deck 4

23 /39

Program 15: Bit Shift Operators

#include <stdio.h>
int main() {

int x = 5; // 0101 binary
printf ("x = %d (binary: 0101)\n",x);
printf ("\nLeft shift:\n");
printf("x << 1 = %d\n", x << 1);
printf ("x << 2 = %d\n", x << 2);
printf ("\nRight shift:\n");
int y = 20; // 10100 binary
printf("y = %d\n", y);
printf("y >> 1 = %d\n", y >> 1);
printf("y >> 2 = %d\n", y >> 2);
return O0;

}

Prof. Jyotiprakash Mishra

x = 5 (binary: 0101)
Left shift:
x << 1 = 10

x << 2 = 20
Right shift:
y = 20
y >> 1 10
y >> 2

Pattern:
o Left shift: multiply by 2
@ Right shift: divide by 2

C Programming: Deck 4

24 /39

#include <stdio.h>
int main() {
int nums[] = {5, 8, 13, 20, T7};

int i;
printf ("Check even/odd using &:\n");
for (i = 0; i < 5; i++) {
if (nums[i] & 1) {
printf ("%d is odd\n", nums[il);
} else {
printf ("%d is even\n",nums[i]);
}
}
return O;
}

Prof. Jyotiprakash Mishra

Program 16: Practical Bitwise - Even/Odd

Output:

Check even/odd using &:
5 is odd
8 is even

13 is odd
20 is even
7 is odd

Trick:

@ LSB of odd numbers is 1
@ n & 1 checks last bit

C Programming: Deck 4

25 /39

Special Operators

Operator | Name Example
sizeof | Size of sizeof (int)
7 Ternary/Conditional [a > b ? a : b
s Comma a=1,b=2
& Address of &x
* Pointer dereference | *ptr

Note: We'll focus on sizeof and ternary operator here

Prof. Jyotiprakash Mishra C Programming: Deck 4 26 /39

Program 17: sizeof Operator

#include <stdio.h>
int main() {
int x = 10;
float f = 3.14;
char ¢ = ’A’;
int arr[10];
printf ("sizeof data types:\n");
printf ("int: %lu bytes\n",
sizeof (int));
printf ("float: %lu bytes\n",
sizeof (float));
printf ("char: %1lu bytes\n",
sizeof (char));
printf ("\nsizeof variables:\n");
printf ("x: %lu bytes\n", sizeof(x));
printf ("arr: J%lu bytes\n",
sizeof (arr));
return O;

yotiprakash Mishra

data types:

4 bytes
4 bytes
1 bytes

variables:

x: 4 bytes
arr: 40 bytes

Note:
o Array:

10 x 4 = 40 bytes

27 /39

Ternary/Conditional Operator

Syntax:

condition 7 expressionl : expression2

How it works:
@ If condition is true, returns expressionl
e If condition is false, returns expression2

o Compact alternative to if-else

Example:
emax = (a>b) ? a : b;

o Ifaj b max=a, else max =b

Prof. Jyotiprakash Mishra C Programming: Deck 4

Program 18: Ternary Operator

G WN

#include <stdio.h>
int main() {
int a = 10, b = 20;
int max, min;
max = (a > b) ? a : b;
min = (a < b) ? a : b;
printf ("a=%d, b=%d\n", a, b);
printf ("Max: %d\n", max);
printf ("Min: %d\n", min);
int num = 7;
printf ("\n%d is %s\n", num,
(num%2==0) ? "even":
int age = 20;
printf ("Age %d: %s\n", age,
(age>=18) ? "Adult":
return O;
¥

Uses:
"oaa"); e Finding max/min
"Minor"); @ Simple conditions

@ Inline decisions

Prof.

yotiprakash Mishra

C Programming: Deck 4

Program 19: Nested Ternary

1l #include <stdio.h>
2 int main() {

int marks = 85; Marks:
4 char grade; Grade:
5 grade = (marks >= 90) YA’ Largest of 5,10,3: 10

= ?

(marks >= 75) ? ’B’

(marks >= 60) ? ’C’
?

K 8 .

g (marks >= 50) 7 ’D’ : ’F’; Warl’llng:

9 printf ("Marks: %d\n", marks);

10 printf ("Grade: %c\n", grade); o Can get CompleX

11 int x = 6, y = 10, z = 3;

12 int largest; U h
19 largest = (x>y) ? @ Use parentheses
14 ((x>z)7x:2)
IC I (y>=)7y:z); @ Consider if-else for clarity
1 printf ("\nLargest of %d,%d,%d: %d\n",
17 X, ¥y, z, largest);
1 return 0;
19}
Prof. Jyotiprakash Mishra C Programming: Deck 4 30/39

Operator Precedence (Partial List)

Priority

Operators

Associativity

1 (Highest)
2

O ~NO OB~ W

9
10
11
12
13
14 (Lowest)

O ->.

I 7 ++ —— + - x & sizeof
*/ h

+ -

<< >>

< <= > >=

&

Left to Right
Right to Left
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Right to Left
Right to Left

Prof. Jyotiprakash Mishra

C Programming: Deck 4

31/39

#include <stdio.h>

int main() {
int result;
result = 2 + 3 * 4;
printf ("2+3*4 = Jd\n", result);
result = (2 + 3) * 4;
printf (" (2+3)*4 = %d\n", result);
result = 10 - 3 + 2;
printf ("10-3+2 = %d\n", result);
result = 10 / 2 x 3;
printf ("10/2*3 = %d\n", result);
result = 10 < 20 && 5 > 3;
printf ("10<20 && 5>3 = %d\n",

result);

return O;

¥

Prof. Jyotiprakash Mishra

Program 20: Precedence Example

2+3%4 = 14

(2+3)*4 = 20
10-3+2
10/2%3
10<20 && 5>3

9
15

Explanation:

@ * before +

@ () highest precedence

o Left-to-right: 10-3=7,
7+2=9

o Left-to-right: 10/2=5,
5*3=15

C Programming: Deck 4

32/39

Program 21: Complex Expression

#include <stdio.h>
int main() {
int a=5, b=10, c=15;

int result;

result = a + b *x ¢ / 5 - 2;

printf ("a=%d, b=%d, c=%d\n",
a, b, ¢c);

printf ("\na+b*c/5-2\n");

printf ("Step by step:\n");

printf ("b*xc = %d\n", bx*c);

printf ("150/5 = %d\n", 150/5);

printf ("a+30 = %d\n", a+30);

printf ("35-2 = %d\n", 35-2);

printf ("\nFinal result: %d\n",
result);

return O;

}

Prof. Jyotiprakash Mishra

a=6, b=10, c=15
a+bxc/5-2

Step by step:
b*c = 150

150/5 = 30

a+30

35-2 =

Final result: 33

Order:
e * / (left-to-right)
o +, - (left-to-right)

33/39

Operators Summary

Arithmetic: +, -, *, /, %

Relational: ==, =, {, j, |=, i=
Logical: &&, —, !

Bitwise: &, —, 7, 7, i, i
Assignment: =, +=, -=, *= /= %=
Inc/Dec: ++, -

@ Special: sizeof, 7 :

® 6 6 o o o

Prof. Jyotiprakash Mishra C Programming: Deck 4 34 /39

Best Practices

Use parentheses for clarity

Understand precedence and associativity
Be careful with ++ and — in expressions
Use compound assignments for readability
Remember integer division truncates

Check types before using modulus

000000

Use relational operators in conditions
@ Ternary for simple conditions only
© Comment complex expressions

Prof. Jyotiprakash Mishra C Programming: Deck 4 35/39

Common Mistakes

@ Using = instead of == in conditions

e if (x = 5) assigns, doesn't compare!
@ Confusing && (logical) with & (bitwise)
© Forgetting integer division

e 5/2is 2, not 2.5
© Modulus with floats (not allowed)
© Complex nested ternary operators

@ Not using parentheses in complex expressions

Prof. Jyotiprakash Mishra C Programming: Deck 4 36/39

© Write expressions using all arithmetic operators

@ Swap two numbers using compound assignment

© Check if a number is divisible by both 3 and 5

© Find maximum of three numbers using ternary

© Use bitwise operators to multiply/divide by powers of 2
@ Write complex expression and trace evaluation order

Prof. Jyotiprakash Mishra C Programming: Deck 4 37/39

Sample: Max of Three

Using Ternary

12

#include <stdio.h>
int main() {
int a=15, b=25, c=20;
int max;
max = (a>b) ?
((a>c) 7 a : c)
((b>c) ? b : c);
printf ("Numbers: %d,%d,%d\n",
a, b, c);
printf ("Maximum: %d\n", max);
return O;
}

yotiprakash Mishra

38/39

End of Deck 4

Questions? Next: Deck 5 - Operator Precedence & Associativity

(Detailed)

Prof. Jyotiprakash Mishra C Programming: Deck 4 39/39

	Introduction to Operators
	Arithmetic Operators
	Increment and Decrement Operators
	Relational Operators
	Logical Operators
	Assignment Operators
	Bitwise Operators
	Special Operators
	Operator Precedence & Associativity
	Summary & Best Practices
	Practice Exercises

