
C Programming: Deck 5
Operator Precedence & Associativity

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming: Deck 5 1 / 34

Topics Covered

1 Introduction

2 Complete Precedence Table

3 Arithmetic Operators

4 Unary Operators

5 Relational and Logical Operators

6 Assignment Operators

7 Mixed Operators

8 Bitwise Operators

9 Parentheses

10 Common Pitfalls

11 Summary

12 Practice Exercises

Prof. Jyotiprakash Mishra C Programming: Deck 5 2 / 34

Why Precedence & Associativity Matter

Determine order of evaluation in expressions

Critical for correct program behavior

Avoid unexpected results

Write clear, unambiguous code

Example:

What is 2 + 3 * 4?

Is it (2 + 3) * 4 = 20? or

Is it 2 + (3 * 4) = 14?

Answer: 14 (multiplication has higher precedence than addition)

Prof. Jyotiprakash Mishra C Programming: Deck 5 3 / 34

Key Concepts

Precedence:

Determines which operator is evaluated first

Higher precedence = evaluated earlier

Similar to BODMAS/PEMDAS in mathematics

Associativity:

Determines order when operators have same precedence

Left-to-right: a - b - c = (a - b) - c

Right-to-left: a = b = c means a = (b = c)

Parentheses:

Override all precedence and associativity rules

Always evaluated first

Prof. Jyotiprakash Mishra C Programming: Deck 5 4 / 34

Operator Precedence Table (Part 1)

Level Operators Description Assoc
1 () [] -> . Parentheses, array, member L to R

2

++ -- (postfix) Postfix inc/dec

R to L

++ -- (prefix) Prefix inc/dec
+ - (unary) Unary plus, minus
! ~ Logical NOT, bitwise NOT
* & Dereference, address-of
sizeof Size of

3 * / % Multiply, divide, modulus L to R
4 + - (binary) Addition, subtraction L to R
5 << >> Left shift, right shift L to R

Prof. Jyotiprakash Mishra C Programming: Deck 5 5 / 34

Operator Precedence Table (Part 2)

Level Operators Description Assoc
6 < <= > >= Relational operators L to R
7 == != Equality operators L to R
8 & Bitwise AND L to R
9 ^ Bitwise XOR L to R
10 | Bitwise OR L to R
11 && Logical AND L to R
12 || Logical OR L to R
13 ?: Ternary conditional R to L
14 = += -= *= /= %= Assignment operators R to L

&= ^= |= <<= >>=

15 , Comma operator L to R

Prof. Jyotiprakash Mishra C Programming: Deck 5 6 / 34

Precedence Hierarchy - Quick Reference

Remember: High to Low

1 Parentheses ()

2 Unary: ++ -- ! ~ + - * &

3 Arithmetic: * / % then + -

4 Shift: << >>

5 Relational: < <= > >= then == !=

6 Bitwise: & then ^ then |

7 Logical: && then ||

8 Ternary: ?:

9 Assignment: = += -= ...

10 Comma: ,

Prof. Jyotiprakash Mishra C Programming: Deck 5 7 / 34

Program 1: Arithmetic Precedence

1 #include <stdio.h>

2 int main() {

3 int result;

4 result = 10 + 5 * 2;

5 printf("10 + 5 * 2 = %d\n",

6 result);

7 printf("Evaluation: 10+(5*2)\n");

8 printf(" 5*2 = 10\n");

9 printf(" 10+10 = 20\n\n");

10 result = 20 - 10 / 2;

11 printf("20 - 10 / 2 = %d\n",

12 result);

13 printf("Evaluation: 20 -(10/2)\n");

14 printf(" 10/2 = 5\n");

15 printf(" 20-5 = 15\n");

16 return 0;

17 }

Output:
10 + 5 * 2 = 20

Evaluation: 10+(5*2)

5*2 = 10

10+10 = 20

20 - 10 / 2 = 15

Evaluation: 20 -(10/2)

10/2 = 5

20-5 = 15

Rule:

*, /, % before +, -

Prof. Jyotiprakash Mishra C Programming: Deck 5 8 / 34

Program 2: Multiple Operations Same Level

1 #include <stdio.h>

2 int main() {

3 int result;

4 result = 20 / 4 * 2;

5 printf("20 / 4 * 2 = %d\n",

6 result);

7 printf("Left to right:\n");

8 printf(" 20/4 = 5\n");

9 printf(" 5*2 = 10\n\n");

10 result = 100 - 50 + 25;

11 printf("100 - 50 + 25 = %d\n",

12 result);

13 printf("Left to right :\n");

14 printf(" 100-50 = 50\n");

15 printf(" 50+25 = 75\n");

16 return 0;

17 }

Output:
20 / 4 * 2 = 10

Left to right:

20/4 = 5

5*2 = 10

100 - 50 + 25 = 75

Left to right:

100 -50 = 50

50+25 = 75

Associativity:

Same precedence

Evaluate left-to-right

Prof. Jyotiprakash Mishra C Programming: Deck 5 9 / 34

Program 3: Complex Arithmetic Expression

1 #include <stdio.h>

2 int main() {

3 int result;

4 result = 2+3*4 -10/2+6%4;

5 printf("Expression :\n");

6 printf("2+3*4 -10/2+6%%4\n\n");

7 printf("Step 1 (*, /, %%):\n");

8 printf(" 3*4 = 12\n");

9 printf(" 10/2 = 5\n");

10 printf(" 6%%4 = 2\n");

11 printf(" => 2+12 -5+2\n\n");

12 printf("Step 2 (+, -):\n");

13 printf(" 2+12 = 14\n");

14 printf(" 14-5 = 9\n");

15 printf(" 9+2 = 11\n\n");

16 printf("Result: %d\n", result);

17 return 0;

18 }

Output:
Expression:

2+3*4 -10/2+6%4

Step 1 (*, /, %):

3*4 = 12

10/2 = 5

6%4 = 2

=> 2+12 -5+2

Step 2 (+, -):

2+12 = 14

14-5 = 9

9+2 = 11

Result: 11

Prof. Jyotiprakash Mishra C Programming: Deck 5 10 / 34

Program 4: Unary vs Binary Operators

1 #include <stdio.h>

2 int main() {

3 int a = 5, b = 3;

4 int result;

5 result = -a + b;

6 printf("a=%d, b=%d\n", a, b);

7 printf("\n-a + b:\n");

8 printf(" -a = %d\n", -a);

9 printf(" -5 + 3 = %d\n\n",

10 result);

11 result = a * -b;

12 printf("a * -b:\n");

13 printf(" -b = %d\n", -b);

14 printf(" 5 * -3 = %d\n\n",

15 result);

16 result = -a * -b;

17 printf("-a * -b = %d\n", result);

18 return 0;

19 }

Output:
a=5, b=3

-a + b:

-a = -5

-5 + 3 = -2

a * -b:

-b = -3

5 * -3 = -15

-a * -b = 15

Note:

Unary - has higher
precedence

Evaluated before binary
operators

Prof. Jyotiprakash Mishra C Programming: Deck 5 11 / 34

Program 5: Increment with Other Operators

1 #include <stdio.h>

2 int main() {

3 int x = 5, y = 5;

4 int result;

5 result = ++x * 2;

6 printf("++x * 2:\n");

7 printf(" x becomes 6\n");

8 printf(" 6 * 2 = %d\n",result);

9 printf(" x = %d\n\n", x);

10 result = y++ * 2;

11 printf("y++ * 2:\n");

12 printf(" uses y=5\n");

13 printf(" 5 * 2 = %d\n",result);

14 printf(" then y becomes %d\n",y);

15 return 0;

16 }

Output:
++x * 2:

x becomes 6

6 * 2 = 12

x = 6

y++ * 2:

uses y=5

5 * 2 = 10

then y becomes 6

Key:

Prefix: increment first

Postfix: use then increment

Prof. Jyotiprakash Mishra C Programming: Deck 5 12 / 34

Program 6: NOT Operator Precedence

1 #include <stdio.h>

2 int main() {

3 int a = 5, b = 0;

4 int result;

5 result = !a + b;

6 printf("a=%d, b=%d\n", a, b);

7 printf("\n!a + b:\n");

8 printf(" !a = %d\n", !a);

9 printf(" 0 + 0 = %d\n\n",

10 result);

11 result = !(a + b);

12 printf("!(a + b):\n");

13 printf(" a+b = %d\n", a+b);

14 printf(" !5 = %d\n\n", result);

15 result = !a && b;

16 printf("!a && b = %d\n", result);

17 return 0;

18 }

Output:
a=5, b=0

!a + b:

!a = 0

0 + 0 = 0

!(a + b):

a+b = 5

!5 = 0

!a && b = 0

Precedence:

! higher than +

() highest

Prof. Jyotiprakash Mishra C Programming: Deck 5 13 / 34

Program 7: Relational Precedence

1 #include <stdio.h>

2 int main() {

3 int a=5, b=10, c=15;

4 int result;

5 result = a + b < c;

6 printf("a=%d, b=%d, c=%d\n",

7 a, b, c);

8 printf("\na + b < c:\n");

9 printf(" a+b = %d\n", a+b);

10 printf(" 15 < 15 = %d\n\n",

11 result);

12 result = a < b + c;

13 printf("a < b + c:\n");

14 printf(" b+c = %d\n", b+c);

15 printf(" 5 < 25 = %d\n",

16 result);

17 return 0;

18 }

Output:
a=5, b=10, c=15

a + b < c:

a+b = 15

15 < 15 = 0

a < b + c:

b+c = 25

5 < 25 = 1

Rule:

Arithmetic before relational

+, - before ¡, ¿, etc.

Prof. Jyotiprakash Mishra C Programming: Deck 5 14 / 34

Program 8: Multiple Relational Operators

1 #include <stdio.h>

2 int main() {

3 int a=5, b=10, c=5;

4 int result;

5 result = a < b == c < b;

6 printf("a=%d, b=%d, c=%d\n",

7 a, b, c);

8 printf("\na<b == c<b:\n");

9 printf("Step 1 (< < same):\n");

10 printf(" a<b = %d\n", a<b);

11 printf(" c<b = %d\n", c<b);

12 printf(" => 1 == 1\n");

13 printf("Step 2 (==):\n");

14 printf(" 1 == 1 = %d\n\n",

15 result);

16 printf("Result: %d\n", result);

17 return 0;

18 }

Output:
a=5, b=10, c=5

a<b == c<b:

Step 1 (< < same):

a<b = 1

c<b = 1

=> 1 == 1

Step 2 (==):

1 == 1 = 1

Result: 1

Note:

< before ==

Prof. Jyotiprakash Mishra C Programming: Deck 5 15 / 34

Program 9: Logical AND/OR Precedence

1 #include <stdio.h>

2 int main() {

3 int a=1, b=0, c=1;

4 int result;

5 result = a || b && c;

6 printf("a=%d, b=%d, c=%d\n",

7 a, b, c);

8 printf("\na || b && c:\n");

9 printf("Step 1 (&& first):\n");

10 printf(" b && c = %d\n",b&&c);

11 printf(" => a || 0\n");

12 printf("Step 2 (||):\n");

13 printf(" 1 || 0 = %d\n\n",

14 result);

15 result = (a || b) && c;

16 printf("(a||b) && c = %d\n",

17 result);

18 return 0;

19 }

Output:
a=1, b=0, c=1

a || b && c:

Step 1 (&& first):

b && c = 0

=> a || 0

Step 2 (||):

1 || 0 = 1

(a||b) && c = 1

Rule:

&& before ——

() changes order

Prof. Jyotiprakash Mishra C Programming: Deck 5 16 / 34

Program 10: Complex Logical Expression

1 #include <stdio.h>

2 int main() {

3 int a=5, b=10, c=15;

4 int result;

5 result = a<b && b<c || a==c;

6 printf("a=%d, b=%d, c=%d\n",

7 a,b,c);

8 printf("\na<b && b<c || a==c\n");

9 printf("Step 1 (relational):\n");

10 printf(" a<b = %d\n", a<b);

11 printf(" b<c = %d\n", b<c);

12 printf(" a==c = %d\n", a==c);

13 printf(" => 1&&1 || 0\n");

14 printf("Step 2 (&&):\n");

15 printf(" 1&&1 = 1\n");

16 printf(" => 1 || 0\n");

17 printf("Step 3 (||): %d\n",

18 result);

19 return 0;

20 }

Output:
a=5, b=10, c=15

a<b && b<c || a==c

Step 1 (relational):

a<b = 1

b<c = 1

a==c = 0

=> 1&&1 || 0

Step 2 (&&):

1&&1 = 1

=> 1 || 0

Step 3 (||): 1

Order:

Relational, &&, ——

Prof. Jyotiprakash Mishra C Programming: Deck 5 17 / 34

Program 11: Assignment Associativity

1 #include <stdio.h>

2 int main() {

3 int a, b, c;

4 a = b = c = 10;

5 printf("a = b = c = 10\n");

6 printf("Right to left:\n");

7 printf(" c = 10\n");

8 printf(" b = c (b=10)\n");

9 printf(" a = b (a=10)\n");

10 printf("Values: a=%d,b=%d,c=%d\n\n",

11 a, b, c);

12 a = (b = 5) + (c = 3);

13 printf("a=(b=5)+(c=3)\n");

14 printf(" b=5, c=3\n");

15 printf(" a = 5+3 = 8\n");

16 printf("Values: a=%d,b=%d,c=%d\n",

17 a, b, c);

18 return 0;

19 }

Output:
a = b = c = 10

Right to left:

c = 10

b = c (b=10)

a = b (a=10)

Values: a=10,b=10,c=10

a=(b=5)+(c=3)

b=5, c=3

a = 5+3 = 8

Values: a=8,b=5,c=3

Associativity:

Assignment: right-to-left

Prof. Jyotiprakash Mishra C Programming: Deck 5 18 / 34

Program 12: Compound Assignment Precedence

1 #include <stdio.h>

2 int main() {

3 int x = 10;

4 printf("Initial: x = %d\n", x);

5 x += 5 * 2;

6 printf("\nx += 5 * 2:\n");

7 printf(" 5*2 = 10 first\n");

8 printf(" x = x+10\n");

9 printf(" x = %d\n\n", x);

10 x = 10;

11 x *= 3 + 2;

12 printf("x *= 3 + 2:\n");

13 printf(" 3+2 = 5 first\n");

14 printf(" x = x*5\n");

15 printf(" x = %d\n", x);

16 return 0;

17 }

Output:
Initial: x = 10

x += 5 * 2:

5*2 = 10 first

x = x+10

x = 20

x *= 3 + 2:

3+2 = 5 first

x = x*5

x = 50

Note:

Right side evaluated first

Then assignment

Prof. Jyotiprakash Mishra C Programming: Deck 5 19 / 34

Program 13: Arithmetic + Relational + Logical

1 #include <stdio.h>

2 int main() {

3 int a=5, b=10, c=15;

4 int result;

5 result = a+b>c && c-a<b;

6 printf("a=%d, b=%d, c=%d\n",

7 a,b,c);

8 printf("\na+b>c && c-a<b\n");

9 printf("Step 1 (arithmetic):\n");

10 printf(" a+b = %d\n", a+b);

11 printf(" c-a = %d\n", c-a);

12 printf(" => 15>15 && 10 <10\n");

13 printf("Step 2 (relational):\n");

14 printf(" 15>15 = 0\n");

15 printf(" 10<10 = 0\n");

16 printf(" => 0 && 0\n");

17 printf("Step 3 (&&): %d\n",

18 result);

19 return 0;

20 }

Output:
a=5, b=10, c=15

a+b>c && c-a<b

Step 1 (arithmetic):

a+b = 15

c-a = 10

=> 15>15 && 10<10

Step 2 (relational):

15>15 = 0

10<10 = 0

=> 0 && 0

Step 3 (&&): 0

Order:

Arithmetic → Relational →
Logical

Prof. Jyotiprakash Mishra C Programming: Deck 5 20 / 34

Program 14: All Operator Types

1 #include <stdio.h>

2 int main() {

3 int a=2, b=3, c=4;

4 int result;

5 result = ++a*b+c--<10&&b>a;

6 printf("Initial: a=2,b=3,c=4\n");

7 printf("\n++a*b+c--<10&&b>a\n");

8 printf("Step 1 (++ prefix):\n");

9 printf(" a becomes 3\n");

10 printf("Step 2 (arithmetic):\n");

11 printf(" 3*3 = 9\n");

12 printf(" 9+4 = 13\n");

13 printf("Step 3 (postfix --):\n");

14 printf(" use 4, then c=3\n");

15 printf("Step 4 (relational):\n");

16 printf(" 13<10=0, 3>3=0\n");

17 printf("Step 5 (&&): %d\n",

18 result);

19 printf("Final: a=%d,c=%d\n",

20 a,c);

21 return 0;

22 }

Output:
Initial: a=2,b=3,c=4

++a*b+c--<10&&b>a

Step 1 (++ prefix):

a becomes 3

Step 2 (arithmetic):

3*3 = 9

9+4 = 13

Step 3 (postfix --):

use 4, then c=3

Step 4 (relational):

13<10=0, 3>3=0

Step 5 (&&): 0

Final: a=3,c=3

Prof. Jyotiprakash Mishra C Programming: Deck 5 21 / 34

Program 15: Ternary Operator Precedence

1 #include <stdio.h>

2 int main() {

3 int a=5, b=10, c=15;

4 int result;

5 result = a<b ? b+c : b-c;

6 printf("a=%d, b=%d, c=%d\n",

7 a,b,c);

8 printf("\na<b ? b+c : b-c\n");

9 printf("Step 1 (relational):\n");

10 printf(" a<b = 1 (true)\n");

11 printf("Step 2 (ternary):\n");

12 printf(" true , so b+c\n");

13 printf(" 10+15 = %d\n\n",

14 result);

15 result = a+b<c ? 1 : 0;

16 printf("a+b<c ? 1 : 0\n");

17 printf(" a+b=15, 15 <15=0\n");

18 printf(" false , so 0\n");

19 printf(" Result: %d\n",result);

20 return 0;

21 }

Output:
a=5, b=10, c=15

a<b ? b+c : b-c

Step 1 (relational):

a<b = 1 (true)

Step 2 (ternary):

true , so b+c

10+15 = 25

a+b<c ? 1 : 0

a+b=15, 15 <15=0

false , so 0

Result: 0

Note:

Ternary low precedence

Prof. Jyotiprakash Mishra C Programming: Deck 5 22 / 34

Program 16: Bitwise Precedence

1 #include <stdio.h>

2 int main() {

3 int a=5, b=3, c=2;

4 int result;

5 result = a & b | c;

6 printf("a=%d, b=%d, c=%d\n",

7 a,b,c);

8 printf("\na & b | c\n");

9 printf("Step 1 (& first):\n");

10 printf(" a&b = 5&3 = %d\n",

11 a&b);

12 printf(" => 1 | 2\n");

13 printf("Step 2 (|):\n");

14 printf(" 1|2 = %d\n\n",result);

15 result = a | b & c;

16 printf("a | b & c\n");

17 printf(" b&c = %d\n", b&c);

18 printf(" a|2 = %d\n", result);

19 return 0;

20 }

Output:
a=5, b=3, c=2

a & b | c

Step 1 (& first):

a&b = 5&3 = 1

=> 1 | 2

Step 2 (|):

1|2 = 3

a | b & c

b&c = 2

a|2 = 7

Order:

& before ˆ before —

Prof. Jyotiprakash Mishra C Programming: Deck 5 23 / 34

Program 17: Shift Operators

1 #include <stdio.h>

2 int main() {

3 int a=8, b=2;

4 int result;

5 result = a << 1 + b;

6 printf("a=%d, b=%d\n", a, b);

7 printf("\na << 1 + b\n");

8 printf("Step 1 (+ first):\n");

9 printf(" 1+b = %d\n", 1+b);

10 printf(" => a << 3\n");

11 printf("Step 2 (<<):\n");

12 printf(" 8<<3 = %d\n\n",result);

13 result = (a << 1) + b;

14 printf("(a<<1) + b\n");

15 printf(" a<<1 = %d\n", a<<1);

16 printf(" 16+2 = %d\n", result);

17 return 0;

18 }

Output:
a=8, b=2

a << 1 + b

Step 1 (+ first):

1+b = 3

=> a << 3

Step 2 (<<):

8<<3 = 64

(a<<1) + b

a<<1 = 16

16+2 = 18

Note:

Arithmetic before shift

Prof. Jyotiprakash Mishra C Programming: Deck 5 24 / 34

Program 18: Power of Parentheses

1 #include <stdio.h>

2 int main() {

3 int a=2, b=3, c=4;

4 int r1 , r2, r3, r4;

5 r1 = a + b * c;

6 r2 = (a + b) * c;

7 r3 = a * b + c;

8 r4 = a * (b + c);

9 printf("a=%d, b=%d, c=%d\n\n",

10 a,b,c);

11 printf("a+b*c = %d\n", r1);

12 printf("(a+b)*c = %d\n", r2);

13 printf("a*b+c = %d\n", r3);

14 printf("a*(b+c) = %d\n", r4);

15 return 0;

16 }

Output:
a=2, b=3, c=4

a+b*c = 14

(a+b)*c = 20

a*b+c = 10

a*(b+c) = 14

Explanation:

2+3*4 = 2+12 = 14

(2+3)*4 = 5*4 = 20

2*3+4 = 6+4 = 10

2*(3+4) = 2*7 = 14

Prof. Jyotiprakash Mishra C Programming: Deck 5 25 / 34

Program 19: Nested Parentheses

1 #include <stdio.h>

2 int main() {

3 int a=2, b=3, c=4, d=5;

4 int result;

5 result = ((a+b)*(c+d))/2;

6 printf("a=%d,b=%d,c=%d,d=%d\n",

7 a,b,c,d);

8 printf("\n((a+b)*(c+d))/2\n");

9 printf("Step 1 (innermost):\n");

10 printf(" a+b = %d\n", a+b);

11 printf(" c+d = %d\n", c+d);

12 printf("Step 2 (multiply):\n");

13 printf(" 5*9 = %d\n", 5*9);

14 printf("Step 3 (divide):\n");

15 printf(" 45/2 = %d\n\n",result);

16 printf("Result: %d\n", result);

17 return 0;

18 }

Output:
a=2,b=3,c=4,d=5

((a+b)*(c+d))/2

Step 1 (innermost):

a+b = 5

c+d = 9

Step 2 (multiply):

5*9 = 45

Step 3 (divide):

45/2 = 22

Result: 22

Rule:

Innermost () first

Prof. Jyotiprakash Mishra C Programming: Deck 5 26 / 34

Program 20: Common Mistake - Assignment in

Condition

1 #include <stdio.h>

2 int main() {

3 int x = 5;

4 printf("x = %d\n\n", x);

5 printf("Wrong: if (x = 0)\n");

6 if (x = 0) {

7 printf(" This won’t print\n");

8 } else {

9 printf(" x assigned 0\n");

10 }

11 printf(" x is now: %d\n\n", x);

12 x = 5;

13 printf("Correct: if (x == 0)\n");

14 if (x == 0) {

15 printf(" Won’t print\n");

16 } else {

17 printf(" x still: %d\n", x);

18 }

19 return 0;

20 }

Output:
x = 5

Wrong: if (x = 0)

x assigned 0

x is now: 0

Correct: if (x == 0)

x still: 5

Warning:

= assigns (returns 0)

== compares

Big difference!

Prof. Jyotiprakash Mishra C Programming: Deck 5 27 / 34

Program 21: Mistake - Logical vs Bitwise

1 #include <stdio.h>

2 int main() {

3 int a = 5, b = 3;

4 printf("a=%d, b=%d\n\n", a, b);

5 printf("Bitwise & (wrong):\n");

6 if (a>0 & b>0) {

7 printf(" Works but wrong!\n");

8 }

9 printf(" a>0 & b>0 = %d\n\n",

10 a>0 & b>0);

11 printf("Logical && (correct):\n");

12 if (a>0 && b>0) {

13 printf(" Both positive\n");

14 }

15 printf(" a>0 && b>0 = %d\n",

16 a>0 && b>0);

17 return 0;

18 }

Output:
a=5, b=3

Bitwise & (wrong):

Works but wrong!

a>0 & b>0 = 1

Logical && (correct):

Both positive

a>0 && b>0 = 1

Note:

& is bitwise

&& is logical

Always use && for
conditions

Prof. Jyotiprakash Mishra C Programming: Deck 5 28 / 34

Quick Reference - Precedence Order

High to Low:

1 () [] -> .
2 ! ~ ++ -- (unary)
3 * / %

4 + - (binary)
5 << >>

6 < <= > >=

7 == !=

8 & (bitwise AND)

9 ^ (bitwise XOR)

10 | (bitwise OR)

11 && (logical AND)

12 || (logical OR)

13 ?: (ternary)

14 = += -= etc.

15 , (comma)

Prof. Jyotiprakash Mishra C Programming: Deck 5 29 / 34

Associativity Rules

Left to Right:

Most operators: + - * / % < > == != && ||

Evaluated from left side first

Right to Left:

Unary operators: ! ~ ++ -- + - * &

Assignment: = += -= *= /=

Ternary: ?:

Evaluated from right side first

Prof. Jyotiprakash Mishra C Programming: Deck 5 30 / 34

Best Practices

1 Use parentheses for clarity

2 Don’t rely on precedence for complex expressions

3 One operation per line for readability

4 Use == not = in conditions

5 Use && not & for logical operations

6 Avoid side effects in complex expressions

7 Comment non-obvious precedence

8 Break down complex expressions

Prof. Jyotiprakash Mishra C Programming: Deck 5 31 / 34

Common Mistakes to Avoid

1 Using = instead of == in conditions

2 Mixing & and && (bitwise vs logical)

3 Forgetting integer division truncates

4 Not using parentheses in complex expressions

5 Assuming left-to-right for all operators

6 Using multiple ++ – in same expression

7 Relying on precedence instead of clarity

Prof. Jyotiprakash Mishra C Programming: Deck 5 32 / 34

Try These!

1 Evaluate: 5 + 3 * 2 - 4 / 2

2 Evaluate: 10 > 5 && 3 < 7 || 2 == 2

3 What’s wrong: if (x = 10)

4 Trace: int x=5; y = ++x * 2 + x++;

5 Rewrite with (): a + b * c / d - e

6 Evaluate: 2 << 3 + 1

Prof. Jyotiprakash Mishra C Programming: Deck 5 33 / 34

End of Deck 5

Questions? Next: Deck 6 - Conditional Statements

Prof. Jyotiprakash Mishra C Programming: Deck 5 34 / 34

	Introduction
	Complete Precedence Table
	Arithmetic Operators
	Unary Operators
	Relational and Logical Operators
	Assignment Operators
	Mixed Operators
	Bitwise Operators
	Parentheses
	Common Pitfalls
	Summary
	Practice Exercises

