C Programming: Deck 5

Operator Precedence & Associativity

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

Prof. Jyotiprakash Mishra C Programming: Deck 5



Topics Covered

@ Introduction

© Complete Precedence Table

© Arithmetic Operators

@ Unary Operators

© Relational and Logical Operators
@ Assignment Operators

@ Mixed Operators

© Bitwise Operators

© Parentheses

@ Common Pitfalls

@ Summary
@ Practice Exercises

Prof. Jyotiprakash Mishra C Programming: Deck 5



Why Precedence & Associativity Matter

@ Determine order of evaluation in expressions
@ Critical for correct program behavior
@ Avoid unexpected results

@ Write clear, unambiguous code

Example:
@ Whatis2 + 3 *x 47
o lsit (2 + 3) x 4 = 207 or
o lsit2 + (3 * 4) 147

Answer: 14 (multiplication has higher precedence than addition)

Prof. Jyotiprakash Mishra C Programming: Deck 5 3/34



Key Concepts

Precedence:

@ Determines which operator is evaluated first
@ Higher precedence = evaluated earlier
@ Similar to BODMAS/PEMDAS in mathematics

Associativity:
@ Determines order when operators have same precedence
o Left-to-right: a - b -c=(a-b) - ¢
@ Right-to-left: a = b = c meansa = (b = ¢)

Parentheses:

@ Override all precedence and associativity rules
@ Always evaluated first

Prof. Jyotiprakash Mishra C Programming: Deck 5 4/34



Operator Precedence Table (Part 1)

Level Operators Description Assoc
1 O no->. Parentheses, array, member LtoR
++ -- (postfix) Postfix inc/dec
++ —— (prefix) Prefix inc/dec
+ = (unar Unary plus, minus
2 ' funa) LogicyaleOT, bitwise NOT | RtoL
* & Dereference, address-of
sizeof Size of
3 * / Multiply, divide, modulus LtoR
4 + - (binary) Addition, subtraction L to R
5 << >> Left shift, right shift LtoR

Prof. Jyotiprakash Mishra



Operator Precedence Table (Part 2)

Level Operators Description Assoc
6 < <= > >= Relational operators LtoR
7 == = Equality operators LtoR
8 & Bitwise AND Lto R
9 - Bitwise XOR L toR
10 | Bitwise OR LtoR
11 && Logical AND LtoR
12 I Logical OR L to R
13 7 Ternary conditional RtolL
14 Assignment operators Rto L
15 B Comma operator LtoR

Prof. Jyotiprakash Mishra




Precedence Hierarchy - Quick Reference

Remember: High to Low

@ Parentheses ()

@ Unary: ++ —— I 7+ - x &
@ Arithmetic: x / % then + -
@ Shift: << >>

@ Relational: < <= > >=then == I=
O Bitwise: & then ~ then |

@ Logical: && then ||

Q Ternary: 7:

© Assignment: = += -= ..

@ Comma: ,

Prof. Jyotiprakash Mishra C Programming: Deck 5



Program 1: Arithmetic Precedence

1 #include <stdio.h>
2 int main() {
3 int result; 10 + 5 *x 2 = 20
4 result = 10 + 5 * 2; Evaluation: 10+(5%2)
5 printf ("10 + 5 * 2 = %d\a", 5x2 = 10
result); 10+10 = 20
7 printf("Evaluation: 10+(5x2)\n"); 20 - 10 / 2 = 15
printf (" 5%2 = 10\n"); Evaluation: 20-(10/2)

printf (" 10+10 = 20\n\n");
1 result = 20 - 10 / 2;
17 printf("20 - 10 / 2 = %d\n",

12 result); .

1 printf ("Evaluation: 20-(10/2)\n"); Rule'

14 printf(" 10/2 = 5\n"); * 0

15 printf(" 20-5 = 15\n"); o * /' 0% before +, -

1 return 0;

yotiprakash Mishra

8/34



Program 2: Multiple Operations Same Level

1) #include <stdio.h>
2 int main() {

int result; 20 / 4 * 2 = 10

4 result = 20 / 4 * 2; Left to right:
5  printf("20 / 4 * 2 = %d\n", 20/4 =5
result); 5%2 = 10

7 printf ("Left to right:\n"); 100 - 50 + 25 = 75
printf (" 20/4 = 5\n"); Left to right:

d printf(" 5%2 = 10\n\n"); 100-50 = 50

1 result = 100 - 50 + 25; 50+25

11 printf ("100 - 50 + 25 = Y%d\n",

12 result); . - .

13 printf ("Left to right:\n"); ASSOCIatIVIty:

14| printf (" 100-50 = 50\n");

| DEERnl Beeh o TNy @ Same precedence

1 return 0;

o Evaluate left-to-right

Prof. Jyotiprakash Mishra

9/34



Program 3: Complex Arithmetic Expression

1| #include <stdio.h>
2 int main() {

int result; Expression:

4 result = 2+3%4-10/2+6%4; 2+3%4-10/2+6%4

5  printf ("Expression:\n"); Step 1 (x, /, %):
printf ("2+3%4-10/2+6%%4\n\n"); 3%4 = 12

7  printf("Step 1 (x, /, %%):\n"); 10/2 = 5
printf (" 3x4 = 12\n"); 6%4 = 2
printf (" 10/2 = 5\n"); => 2+12-5+2

1 printf (" 6%%4 = 2\n"); Step 2 (+, -):

11 printf (" => 2+12-5+2\n\n"); 2+12 = 14

12 printf("Step 2 (+, -):\n"); 14-5 9

13 printf(" 2+12 = 14\n"); 9+2 11

14 printf(" 14-5 = 9\n"); Result: 11

15 printf (" 9+2 = 11\n\n");

1 printf ("Result: %d\n", result);

17 return O;

18 ¥

yotiprakash Mishra

10/34



Program 4: Unary vs Binary Operators

1 #include <stdio.h>

2 int main() {

int a = 5, b = 3;

4 int result;

5 result = -a + b;

[§ printf ("a=%d, b=%d\n", a, b);
1 printf ("\n-a + b:\n");

printf (" -a = %d\n", -a);
printf(" -5 + 3 = %d\n\n",
1 result);
11 result = a * -b;
12| printf("a * -b:\n");
13 printf (" -b = %d\n", -b); NOte:
14 printf (" 5 * -3 = %d\n\n", .
1 OIS @ Unary - has higher
1 result = -a * -b;
17 printf("-a * -b = %d\n", result); precedence
1 return O;

o Evaluated before binary
operators

Prof. Jyotiprakash Mishra C Programming: Deck 5 11/34



Program 5: Increment with Other Operators

1 #include <stdio.h>
2 int main() {
int x = 5, y = 5; ++x o x 2

x becomes 6

4 int result;

5 result = ++x * 2; 6 * 2 = 12
[§ printf ("++x * 2:\n"); x =6

7 printf (" x becomes 6\n"); yrt ow2:

printf (" 6 * 2 = Jd\n",result);
printf (" x = %d\n\n", x);

1 result = y++ * 23

11| printf ("y++ * 2:\n");

12 printf(" wuses y=5\n");

13 printf (" 5 % 2 = %d\n",result);
14  printf(" then y becomes %d\n",y);

1§ return 0; @ Prefix: increment first

@ Postfix: use then increment

Prof. Jyotiprakash Mishra C Programming: Deck 5 12 /34



Program 6: NOT Operator Precedence

1| #include <stdio.h>

2 int main() {

int a = 5, b = 0;

4 int result;

5 result = !'a + b;

printf ("a=%d, b=%d\n", a, b);
1 printf ("\n'a + b:\n");

printf (" la = %d\n", 'a);
printf(" 0 + 0 = %d\n\n",
1 result);
11) result = !(a + b);
12 printf("!(a + b):\n");
1 printf(" a+b = %d\n", a+b); Precedence:
14 printf (" 15 = %d\n\n", result); | i
15 result = !a && b;
1 printf("!a && b = %d\n", result); ®: hlgher than +

17 return 0;

19y @ () highest

Prof.

yotiprakash Mishra C Programming: Deck 5 13 /34



Program 7: Relational Precedence

#include <stdio.h>
int main() {
int a=5, b=10, c=15;

int result;

result = a + b < c;

printf ("a=%d, b=%d, c=%d\n",
a, b, c);

printf("\na + b < c:\n");

printf (" a+b = %d\n", a+b);

printf (" 15 < 15 = %d\n\n",
result);

result = a < b + c;

printf("a < b + c:\n");

printf (" b+c = %d\n", b+c);

printf (" 5 < 25 = %d\n",
result);

return 0;

¥

Rule:

@ Arithmetic before relational
@ +, - before j, i, etc.

Prof. Jyotiprakash Mishra

C Programming: Deck 5 14 /34



Program 8: Multiple Relational Operators

1| #include <stdio.h>
2 int main() {
int a=5, b=10, c=5;
4 int result; a<b == c<b:
5 result = a < == ¢ < b; Step 1 (< < same):
printf ("a=%d, b=%d, c=%d\n",
7 a, b, c);
printf ("\na<b == c<b:\n");
printf ("Step 1 (< < same):\n");
1 printf (" a<b = %d\n", a<b);
17 printf (" c<b = %d\n", c<b); Result:
12 printf (" => 1 == 1\n");
13 printf ("Step 2 (==):\n");
14 printf (" 1 == 1 = %d\n\n", NOte:
15 result);
1 printf ("Result: %d\n", result); @ < before ==
17 return 0;
18 ¥

yotiprakash Mishra



Program 9: Logical AND/OR Precedence

Step 1 (&& first):

b && c =

Rule:
o && before ——
@ () changes order

1l #include <stdio.h>
2 int main() {

int a=1, b=0, c=1;
4 int result;
5 result = a || b && c;
3 printf ("a=%d, b=%d, c=%d\n",
7 a, b, ¢);
g printf("\na || b && c:\n");
9 printf("Step 1 (&& first):\n");
1 printf (" b && c = %d\n",b&&c);
11 printf(" => a || 0\n");
12 printf("Step 2 (Il):\n");
1 printf(" 1 || 0 = %d\n\n",
14 result);
15 result = (a || b) && c;
1 printf ("(allb) && c = %d\n",
17 result);
1 return 0;
19}

Prof. Jyotiprakash Mishra

C Programming: Deck 5

16 /34



Program 10: Complex

Logical Expression

#include <stdio.h>

int main() {
int a=5, b=10, c=15;
int result;
result = a<b && b<c || a==c;
printf ("a=%d, b=%d, c=%d\n",

a,b,c);
printf ("\na<b && b<c || a==c\n");
printf ("Step 1 (relational):\n");
printf (" a<b = %d\n", a<b);
printf (" b<c = %d\n", b<c);
printf (" a==c = %d\n", a==c);
printf (" => 1&&1 || O0\n");
printf ("Step 2 (&&):\n");
printf (" 1&&1 = 1\n");
printf (" => 1 || 0\n");
printf ("Step 3 (ll): %d\n",
result);

return O;

}

a=5, b=10, c=15
a<b && b<c || a==c
Step 1 (relational):
a<b =1
b<c =1

1&&1 |1 0
Step 2 (&&):
1g&1 = 1
=> 1110
Step 3 (l1): 1

Order:
@ Relational, &&, ——

yotiprakash Mishra

17/34



Program 11: Assignment Associativity

#include <stdio.h>

int main() {
int a, b, c;
a=Db=c¢c = 10;
printf("a = b = ¢ = 10\n");
printf ("Right to left:\n");
printf (" ¢ = 10\n");
printf(" b = ¢ (b=10)\n");
printf(" a = b (a=10)\n");
printf ("Values: a=%d,b=%d,c=/d\n\n",
a, b, c);
a= (b =25) + (c = 3);
printf ("a=(b=5)+(c=3)\n");
printf (" b=5, c=3\n");
printf (" a = 5+3 = 8\n");
printf ("Values: a=%d,b=%d,c=/d\n",
a, b, c);
return O;
}

Prof. Jyotiprakash Mishra

Values: a=10,b=10,c=10
a=(b=5)+(c=3)

b=5, c=3

a =
Values:

Associativity:
@ Assignment: right-to-left

C Programming: Deck 5

18/34



Program 12: Compound Assignment Precedence

1 #include <stdio.h>

2 int main() {

3 int x = 10; Initial:

4 printf ("Initial: x = %d\n", x); x += 5 x 2:

5 X += 5 % 2; = 10 first

printf ("\nx += 5 * 2:\n");

7 printf (" 5%x2 = 10 first\n");
printf (" x = x+10\n");
printf (" x = %d\n\n", x);

1 x = 10;

17 x *= 3 + 2

12 printf("x *= 3 + 2:\n");

1 printf (" 342 = 5 first\n");

14 printf(" x = x*5\n"); NOte:
15 printf (" x = %d\n", x); . . .
g o O @ Right side evaluated first

@ Then assignment

Prof. Jyotiprakash Mishra C Programming: Deck 5 19 /34



Program 13: Arithmetic + Relational + Logical

1 #include <stdio.h>

2 int main() {

3 int a=5, b=10, c=15; a=5, b=10, c=15

4 int result; a+b>c && c-a<b

5 result = a+b>c && c-a<b; Step 1 (arithmetic):
printf ("a=%d, b=%d, c=%d\n", a+b = 15

1 a,b,c); c-a = 10
printf ("\na+b>c && c-a<b\n"); => 15>15 && 10<10
printf ("Step 1 (arithmetic):\n"); Step 2 (relational):

1 printf (" a+b = %d\n", a+b); 15>15 = 0

11 printf (" c-a = %d\n", c-a); 10<10 = 0

12 printf(" => 15>15 && 10<10\n"); => 0 ¢ ©
1: printf ("Step 2 (relational):\n"); Step 3 (&&): 0
14 printf(" 15>15 = 0\n");

15  printf(" 10<10 = 0\n"); .

1 printf (" => 0 &% 0\n"); Order.

17 printf ("Step 3 (&&): %d\n", . . .

1 result); @ Arithmetic — Relational —
19 return O;

20} Logical

yotiprakash Mishra 20/34



Program 14: All Operato

#include <stdio.h>
int main() {

int a=2, b=3, c=4;

int result;

result = ++a*b+c--<10&&b>a;

printf ("Initial: a=2,b=3,c=4\n");

printf ("\n++a*b+c--<10&&b>a\n");

printf ("Step 1 (++ prefix):\n");

printf (" a becomes 3\n");

printf ("Step 2 (arithmetic):\n");

printf (" 3x3 = 9\n");

printf (" 9+4 = 13\n");

printf ("Step 3 (postfix--):\n");

printf (" use 4, then c=3\n");

printf ("Step 4 (relational):\n");

printf (" 13<10=0, 3>3=0\n");

printf ("Step 5 (&&): %d\a",
result);

printf ("Final: a=%d,c=%d\n",
a,c);

return O;

otiprakash Mishra

Initial: a=2,b=3,c=4
++a*b+c--<10&&b>a
Step 1 (++ prefix):
a becomes 3
Step 2 (arithmetic):
3%x3 = 9
9+4 = 13
Step 3 (postfix-
use 4, then c=3
Step 4 (relational):
13<10=0, 3>3=0
Step 5 (&&): O
Final: a=3,c=3

21/34



Program 15: Ternary Operator Precedence

1] #include <stdio.h>

2 int main() {
int a=5, b=10, c=15; a6, »oll, eoils

4 int result; Al ¥ bue § beE

5  result = a<b ? b+c : b-c; Step 1 (relational):

S| printf ("a=%d, b=%d, c=%d\n", a<b = 1 (true)

7 DR Step 2 (ternary):
printf ("\na<b ? b+c : b-c\n"); true, so b+c
printf ("Step 1 (relational):\n"); 10+15 = 25

1 printf (" a<b = 1 (true)\n"); atb<c 7 1 : 0

11) printf ("Step 2 (ternary):\n"); a+b=15, 15<15=0

12| printf (" true, so b+c\n"); false, so 0

13 printf (" 10+15 = %d\n\n", Result: 0O

14 result);

15 result = a+b<c 7 1 : 0;

1 printf("a+b<c ? 1 : 0\n"); Note:

17 printf (" a+b=15, 15<15=0\n");

el Laion s co e @ Ternary low precedence

1 printf (" Result: %d\n",result);

2 return 0;

210 ¥

yotiprakash Mishra 22/34




Program 16: Bitwise Precedence

#include <stdio.h>

int main() {
int a=5, b=3, c=2;
int result;
result = a & b | c;
printf ("a=%d, b=%d, c=%d\n",

a,b,c);
printf("\na & b | c\n");
printf ("Step 1 (& first):\n");
printf (" a&b = 5&3 = %d\n",
agb);

printf(" => 1 | 2\n");
printf ("Step 2 (|):\n");
printf (" 1|2 = %d\n\n",result);
result = a | b & c;
printf("a | b & c\n");
printf (" b&c = %d\n", bé&c);
printf (" al2 = %d\n", result);
return O;

}

yotiprakash Mishra

a=5, b=3

a&b |l c

Step 1 (& first):
a&b = 5&3 = 1
=> 1| 2

Step 2 (I):
112

(=]

Order:
@ & before © before —

23/34



Program 17: Shift Operators

1| #include <stdio.h>
2 int main() {

int a=8, b=2; a=8, b=2
4 int result; a << 1 + b
5 result = a << 1 + b; Step 1 (+ first):
printf ("a=%d, b=%d\n", a, b); 1+b = 3
7 printf ("\na << 1 + b\n"); => a << 3
printf ("Step 1 (+ first):\n"); Step 2 (<<):
printf (" 1+b = %d\n", 1+b); 8<<3 64
1 printf (" => a << 3\n"); (a<<1) b
17 printf ("Step 2 (<<):\n"); a<<1 16
12 printf (" 8<<3 = %d\n\n",result); 16+2 18
13 result = (a << 1) + b;
14 printf("(a<<1) + b\n");
15 printf (" a<<i = %d\n", a<<1); NOte:
1 printf (" 16+2 = %d\n", result); . . .
1, Tetuem 0 @ Arithmetic before shift

yotiprakash Mishra




Program 18: Power of Parentheses

#include <stdio.h>
int main() {

int a=2, b=3, c=4;

int r1, r2, r3, r4;

rl a + b *x c;

r2 (a + b) * c;
1 r3 a * b + c;
rd a * (b + c);
printf ("a=%d, b=%d, c=%d\n\n", -
1 B e Explanation:
11 printf ("a+bxc = %d\n", ril);
12 printf("(a+b)*c = %d\n", r2); Py 2+3*4 = 2412 = 14

13 printf ("axb+c = %d\n", r3);

2 o (243)*4 = 5%4 =20
@ 2*¥3+4 =6+4 =10
o 2%(3+4) = 2*7 = 14

Ol W N

Prof. Jyotiprakash Mishra C Programming: Deck 5 25/34



#include <stdio.h>

int main() {
int a=2, b=3, c=4, d=5;
int result;
result = ((a+b)*(c+d))/2;
printf ("a=%d,b=%d,c=%d,d=%d\n",

a,b,c,d);

printf ("\n((a+b)*(c+d))/2\n");
printf ("Step 1 (innermost):\n");
printf (" a+b = %d\n", a+b);
printf (" c+d = %d\n", c+d);
printf ("Step 2 (multiply):\n");
printf (" 5%9 = %d\n", 5%9);
printf ("Step 3 (divide):\n");

printf (" 45/2 = %d\n\n",result);

printf ("Result: %d\n", result);
return 0;

Prof. Jyotiprakash Mishra

Program 19: Nested Parentheses

a=2,b=3,c=4,d=5

((a+b)*(c+d))/2

Step 1 (innermost):
a+b = 5
ctd = 9

Step 2 (multiply):
5%9 = 45

Step 3 (divide):
45/2 = 22

Result: 22

Rule:
@ Innermost () first




Condition

#include <stdio.h>
int main() {
int x = 53
printf ("x = %d\n\n", x);
printf ("Wrong: if (x = 0)\n");
if (x = 0) {
printf (" This won’t print\n");
} else {
printf (" x assigned 0\n");
printf (" x is now: %d\n\n", x);
x = 5;
printf ("Correct: if (x == 0)\n");
if (x == 0) {
printf (" Won’t print\n");
} else {
printf (" x still: %d\n", x);
return O;
¥

Prof. Jyotiprakash Mishra

Program 20: Common Mistake - Assignment in

Wrong: (x = 0)

X assigned O

X is now:
Correct:

x still:

Warning:
@ = assigns (returns 0)
@ == compares

o Big difference!

C Programming: Deck 5

27 /34



Program 21: Mistake - Logical vs Bitwise

1 #include <stdio.h>

2 int main() {

3 int a = 5, b = 3; =5, =Y

4 printf ("a=%d, b=%d\n\n", a, b); Bitwise & (wrong):

5 printf ("Bitwise & (wrong):\n"); Works but wrong!
if (a>0 & b>0) { a.>0 & b>0 = 1

7 printf (" Works but wrong!\n"); Logical && (correct):
3 Both positive
printf(" a>0 & b>0 = %d\n\n", a>0 && b>0 = 1

1 a>0 & b>0);

11 printf ("Logical && (correct):\n");

12 if (a>0 && b>0) { Note:

1 printf (" Both positive\n");

b : @ & is bitwise

15 printf (" a>0 && b>0 = %d\n",

1 a>0 && b>0); . .

17 return O; o && IS IOg'CaI

1

Prof. Jyotiprakash Mishra

o Always use && for
conditions

C Programming: Deck 5

28 /34



Quick Reference - Precedence Order

High to Low:

QO 0 —>. @ " (bitwise XOR)

Q@ ! ~ ++ - (unary) @ | (bitwise OR)

g -/ (/b ) @ & (logical AND)
+ - (binary _

0 << >> @ || (logical OR)

Q < <= > >= @ 7: (ternary)

°== | = ®=+= -= etc.

Q & (bitwise AND) ® , (comma)

Prof. Jyotiprakash Mishra C Programming: Deck 5



Associativity Rules

Left to Right:
@ Most operators: + = x / 9, < > == 1= && ||

@ Evaluated from left side first

Right to Left:
@ Unary operators: !

++ =+ - x &
@ Assignment: = += -= *= /=
@ Ternary: 7:

o Evaluated from right side first

Prof. Jyotiprakash Mishra C Programming: Deck 5



Best Practices

@ Use parentheses for clarity

@ Don’t rely on precedence for complex expressions
© One operation per line for readability

© Use == not = in conditions

© Use && not & for logical operations

@ Avoid side effects in complex expressions

@ Comment non-obvious precedence

@ Break down complex expressions

Prof. Jyotiprakash Mishra C Programming: Deck 5 31/34



Common Mistakes to Avoid

@ Using = instead of == in conditions

@ Mixing & and && (bitwise vs logical)

© Forgetting integer division truncates

© Not using parentheses in complex expressions
© Assuming left-to-right for all operators

@ Using multiple ++4 — in same expression

@ Relying on precedence instead of clarity

Prof. Jyotiprakash Mishra C Programming: Deck 5 32/34



© Evaluate: 5 + 3 x 2 -4 / 2

© Evaluate: 10 > 5 & 3 < 7 || 2 ==
© What's wrong: if (x = 10)

©Q Trace: int x=5; y = ++x * 2 + x++;
© Rewritewith (): a + b *xc / d - e
©Q Evaluate: 2 << 3 + 1

Prof. Jyotiprakash Mishra C Programming: Deck 5




End of Deck 5

Questions? Next: Deck 6 - Conditional Statements

Prof. Jyotiprakash Mishra C Programming: Deck 5



	Introduction
	Complete Precedence Table
	Arithmetic Operators
	Unary Operators
	Relational and Logical Operators
	Assignment Operators
	Mixed Operators
	Bitwise Operators
	Parentheses
	Common Pitfalls
	Summary
	Practice Exercises

