C Programming: Loops

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

January 16, 2026

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

Topics Covered

@ Introduction to Loops

© while Loop
© do-while Loop

@ for Loop

© for Loop Variations
@ break Statement
@ continue Statement
© Nested Loops

© Common Loop Patterns
@ Summary

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

What are Loops?

Repeatedly execute a block of code
Continue until a condition becomes false

Avoid code repetition

Essential for iterative tasks

Types of Loops in C:
@ while loop - condition checked before execution
@ do-while loop - condition checked after execution

© for loop - compact loop with initialization

Loop Control:
@ break - exit loop immediately

@ continue - skip to next iteration

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

while Loop - Syntax

Syntax:

while (condition) {
' // code to execute
; // update condition variable

}

Flow:
@ Check condition first
o If true, execute block
@ Repeat until condition is false
°

May never execute if condition is false initially

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

e e

Program 1: Basic while

#include <stdio.h>
int main() {
int i = 1;
printf ("Counting 1 to 5:\n");
while (i <= 5) {
printf("%d ", i);
i++;
¥
printf ("\nDone!\n");
return O;

Output:

Counting 1 to 5:
12345
Done!

Explanation:
@ istarts at 1
@ Loop runs while i j=5
@ i incremented each iteration
°

Exits when i becomes 6

Prof. Jyotiprakash Mishra

January 16, 2026

Program 2: while Loop - Sum of Numbers

printf ("\nTotal: %d\n", sum);
return O;

} Note:

@ Accumulates sum

. #include <stdio.h> Output:

) int main() {

3 int n = 5, i = 1, sum = 0; Sumlof 1 to 5:

X printf ("Sum of 1 to %d:\n", n); Add}ng 1, sum=1
> while (i <= n) { Adding 2, sum=3
> sum += i; Adding 3, sum=6
! printf ("Adding %d, sum=%d\n", Adding 4, sum=10
3 i, sum); Adding 5, sum=15
) i++;

) } Total: 15

|

)

3

@ Shows each step

yotiprakash Mishra i January 16, 2026

e

Program 3: while Loop - Factorial

#include <stdio.h> Output:
int main() {
int n = 5, i = 1; Factorial of 5:
int factorial = 1; ig = 4
printf ("Factorial of %d:\n", n); 2! = 2
while (i <= n) { 31 =6
factorial *= ij; 4! = 24
printf("%d! = %d\n", i, factorial); 5! = 120
i++;
} -
return 0; Explanation:

Prof. Jyotiprakash Mishra

e Multiplies 1*2*3*4%*5
@ Shows each step
e 5! =120

C Programming: Loops January 16, 2026

Program 4: while Loop - Reverse Print

| #include <stdio.h> Output:

) int main() {

3 int i = 10; Countdown:

4 printf ("Countdown:\n"); 10 987 654321

) while (i > 0) { Blastoff!

> printf("%d ", i);

/ i--;

S Note:

) printf ("\nBlastoff !\n");

o e e Counts down from 10

@ Loop decrements i

@ Stops when i becomes 0

Prof. Jyotiprakash Mishra i January 16, 2026

do-while Loop - Syntax

Syntax:

do {

' // code to execute

; // update condition variable
} while (condition);

Flow:
@ Execute block first
@ Then check condition
@ Repeat if condition is true
°

Executes at least once (key difference from while)

Key Point: Note the semicolon after while(condition)

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

Program 5: Basic do-while

| #include <stdio.h> Output:

’ int main() {

3 int i = 1; Counting with do-while:

b printf ("Counting with do-while:\n"); 12345

5 do { Done!

> printf("%d ", i);

4 it .

5} while (i <= 5); Explanation:

) printf ("\nDone!\n");

Lo, e @ Executes body first

@ Then checks condition

@ Same result as while here

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

Program 6: do-while vs while - Key Difference

| #include <stdio.h> Output:

’ int main() {

3 int i = 10; while loop:

A printf ("while loop:\n"); while done

> while (i < 5) { X

> printf ("This won’t print\n"); do-while loop:

4 This prints once!

3 printf ("while done\n\n"); do-while done

) i = 10;

) printf ("do-while loop:\n"); .

 de A Key Difference:

) printf ("This prints once!\n");

3 } while (i < 5); HP- H
S iimet (e hite domevn); @ while: checks first, may not
o, e O execute

@ do-while: executes once
minimum

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 11/39

e e

Program 7: do-while - Menu S

#include <stdio.h>
int main() {
int choice;
int count = 0;
do {
printf ("\nMenu:\n");
printf("1. Option 1\n");
printf ("2. Option 2\n");
printf ("3. Exit\n");

choice = (count == 0) ? 1
(count 1) 7 2 : 3;
printf ("Choice: %d\n", choice);
count++;
} while (choice != 3);

printf ("Exiting...\n");
return O;

}

otiprakash Mishra

Output:

Menu:

1. Option
2. Option
3. Exit
Choice: 1

Menu:

1. Option
2. Option
3. Exit
Choice: 2

Menu:

1. Option
2. Option
3. Exit
Choice: 3
Exiting...

S

N

N

January 16, 2026

for Loop - Syntax

Syntax:

for (initialization; condition; update) {
// code to execute

}

Flow:
@ Execute initialization once
@ Check condition
© If true, execute body
© Execute update
@ Go to step 2

Equivalent while loop:
initialization;
while (condition) {
// code to execute
update;
}

Prof. Jyotiprakash Mishra C Programming: Loops

January 16, 2026

13/39

Program 8: Basic for Loop

. #include <stdio.h> Output:

’ int main() {

3 int i; for loop 1 to 5:

} printf ("for loop 1 to 5:\n"); 138860

> for (i = 1; i <= 5; i++) {

5 printf("%d ", i); for loop 10 to 1:

7 10 987 654321
3 printf ("\n\nfor loop 10 to 1:\n");

) for (i = 10; i >= 1; i--) {

) printf ("%d ", i); Note:

] ¥

) i i\t

] printf ("\n");

. Priirn o) o Compact syntax
Lo}

@ All loop control in one line

@ Most common loop type

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 14 /39

Program 9: for Loop - Even Numbers

| #include <stdio.h> Output:

4 int main() {

3 int i; Even numbers 1-20:

3 printf ("Even numbers 1-20:\n"); 2468 10 12 14 16 18 20

> for (i = 2; i <= 20; i += 2) {

5 printf ("%d ", i); 0dd numbers 1-20:

4 1357 9 11 13 15 17 19

3 printf ("\n\n0dd numbers 1-20:\n");

) for (i = 1; i <= 20; i += 2) {

) printf("%d ", i); Note:

! }

> intf("\n"); . Lo -

. printr(inn) @ Custom increment: i += 2
return O;

bl

o Different start values

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

e

Program 10: for Loop - Multiplication Table

#include <stdio.h>
int main() {

int n = 7, i;
printf ("Multiplication table of %d:\n",
n);

for (i = 1; i <= 10; i++) {
printf("%d x %d = %d\a",
n, i, n * i);
¥

return O;

yotiprakash Mishra

o
c
o=+
o
c
4

ultiplication table of 7:

[T T I TR TR
w
o

NNNNNNNANNNE

1
x
X
X
X
X
X
X
X
X
X

B ©0ONOONWN R

January 16, 2026

for Loop Variations

Standard form:
for (i = 0; i < 10; i++) { }
Variations:
o Multiple initializations: for (i=0, j=10; ...)
Multiple updates: for (...; i++, j--)
Empty parts: for (;;) - infinite loop

°
°
o No initialization: for (; i<10; i++)
@ No update: for (i=0; i<10;)

°

Declare in loop: for (int i=0; i<10; i++)

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

Program 11: Multiple Variables in for

. #include <stdio.h> Output:
) int main() {
3 int i, j; Two counters:
4 printf ("Two counters:\n"); ::l=1, J:=10, sum=11
> for (i=1, j=10; i<=5; i++, j--) { 1o, =0, Emmeild
> printf ("i=Y%d, j=%d, sum=%d\n", i=3, j=8, sum=11
/ i, j, i+j); i=4, j=7, sum=11
3 } i=5, j=6, sum=11
) return O;
N

Note:

@ Two variables: i, j
@ i increments, j decrements

@ Sum stays constant

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

Program 12: Infinite Loop with Break

. #include <stdio.h> 0utput:

) int main() {

3 int count = 0; Infinite loop demo:
b printf("Infinite loop demo:\n"); Count: 0O

> for (;;) { Count: 1

> printf ("Count: %d\n", count); Count: 2

! count++; Count: 3

3 if (count >= 5) { Countf 4

) printf ("Breaking out!\n"); Breaking out!
) break; Loop exited

1 }

) ¥

3 printf ("Loop exited\n"); Note:

s return O;

)

e for (;;) is infinite

@ break exits the loop

yotiprakash Mishra i January 16, 2026

Program 13: Variable Declared in for Loop

#include <stdio.h>
int main() {
printf ("C99 style for loop:\n");
for (int i = 1; i <= 5; i++) {
printf("%d ", i);

printf ("\n\nAnother loop:\n");
for (int i = 10; i > 5; i--) {
printf ("%d ", i);

printf ("\n");
return O;

Output:

C99 style for loop:
12345

Another loop:
10 9 8 7 6

Note:
@ Variable i declared in loop
@ Scoped to loop only
o (99 feature

@ Can reuse name i

Prof. Jyotiprakash Mishra

January 16, 2026

20 /39

break Statement

Purpose:
o Exit loop immediately
@ Skip remaining iterations
@ Continue with code after loop

@ Works with while, do-while, for

Syntax:

while (condition) {
if (some_condition) {
break; // exit loop

Prof. Jyotiprakash Mishra C Programming: Loops

January 16, 2026

21/39

e e

#include <stdio.h>
int main() {
int i;
printf ("Find first number > 50\n");
printf("divisible by 7:\n\n");
for (i = 51; i <= 100; i++) {

if (1 %7 == 0) {
printf ("Found: %d\n", i);
break;

s

}
printf ("Loop ended at i=%d\n", i);
return O;

Prof. Jyotiprakash Mishra

Program 14: break - Find First Multiple

Output:

Find first number > 50
divisible by 7:

Found: 56
Loop ended at i=56

Explanation:

@ Loop starts at 51

o First multiple of 7 is 56
@ break exits immediately
°

i retains value 56

January 16, 2026

. break - Search in Loop

. #include <stdio.h> Output:

4 int main() { -

3 int target = 7, ij; Searching for 7:

3 int found = 0; Check?ng 1

> printf ("Searching for %d:\n", Check}ng 2

> target); Checking 3

| for (i = 1; i <= 10; i++) { Check}ng 4

3 printf ("Checking %d\n", i); Checking 5

) if (i == target) { Checking 6

) found = 1; Checking 7

| break;

) ¥ Found at position 7
3 ¥

b if (found) {

> printf ("\nFound at position %d\n", Note:

> i);

/

3]}:eturn 0; L Stops When found
)}

@ Saves iterations

Prof. Jyotiprakash Mishra i January 16, 2

continue Statement

Purpose:
@ Skip rest of current iteration
@ Jump to next iteration
@ Loop continues running

@ Works with while, do-while, for

Syntax:

for (i = 0; i < 10; i++) {
! if (some_condition) {
: continue; // skip to next iteration
}
. // this code skipped if continue executed

> b

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

Program 16: continue - Skip Odd Numbers

. #include <stdio.h> Output:

’ int main() {

3 int i; Even numbers 1-10:

b printf ("Even numbers 1-10:\n"); 246810

> for (i = 1; i <= 10; i++) {

) if (4% 2 !'=0) { .

; , comvimue Explanation:

S e If i is odd, continue
] printf ("\n"); . .

) return 0; @ printf skipped for odd
3}

@ Only even numbers print

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 25/39

Program 17: continue - Skip Multiples

| #include <stdio.h> Output:

’ int main() {

3 int i Numbers 1-20

1 printf ("Numbers 1-20\n"); (skip multiples of 3):

5 printf (" (skip multiples of 3):\n"); 124578 10 11 13 14 16 17 19 20
> for (i = 1; i <= 20; i++) {

/ if (i % 3 ==0) {

3 continue; Note:

) s

) intf("%d ", i); .

L, P B @ Skips 3, 6, 9, 12, 15, 18
) printf ("\n"); . . .

3 return 0; @ continue jumps to I++
-

@ Loop continues

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 26 /39

B e e

Program 18: break vs continue

#include <stdio.h>
int main() {
int i
printf ("With continue:\n");
for (i = 1; i <= 10; i++) {
if (i == 5) continue;
printf("%d ", i);

printf ("\n\nWith break:\n");

for (i = 1; i <= 10; i++) {
if (i == 5) break;
printf("%d ", i);

printf ("\n");
return O;

Output:

With continue:
12346789 10

With break:
1234

Difference:
@ continue: skips 5, continues

@ break: stops at 5, exits loop

Prof. Jyotiprakash Mishra

C Programming: Loops January 16, 2026

27 /39

Nested Loops

Definition:
@ Loop inside another loop
@ Inner loop executes completely for each outer iteration

@ Can nest any loop type

Execution:

Outer loop: 1 iteration

@ Inner loop: all iterations
@ Outer loop: next iteration
o

Inner loop: all iterations again

Common Uses:
@ 2D arrays, matrices
@ Pattern printing

@ Nested data structures

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

B e

Program 19: Nested Loop - Rectangle Pattern

#include <stdio.h>
int main() {
int i, j;
int rows = 4, cols = 6;

printf ("Rectangle pattern:\n");
for (i = 1; i <= rows; i++) {

for (j = 1; j <= cols;
printf ("*x ");

printf ("\n");

return O;

j++) o

Output:

Rectangle pattern:
LR

* * *
* * *
* * *

* Kk ok
* ok ok
* k%

Explanation:
@ Outer loop: 4 rows
@ Inner loop: 6 cols each row
o Total: 24 stars

Prof. Jyotiprakash Mishra

January 16, 2026

29 /39

Program 20: Nested Loop - Multiplication Table

#include <stdio.h>
int main() {

int i, j;
printf("Multiplication table:\n");
printf (" ")

for (i = 1; i <= 5; i++) {
printf ("%4d", i);

printf ("\n");

for (i = 1; i <= 5; i++) {
printf("j2d:", i);
for (j = 1; j <= 5; j++) {

printf ("%4d", i * j);

printf ("\n");

return O;

yotiprakash Mishra

Output:
Multiplication table:
1 2 3 4 5
ilg 1 2 3 4 5
2k 2 4 6 8 10
3: 3 6 9 12 15
4: 4 8 12 16 20
5: 5 10 15 20 25
Note:

@ Outer: rows (i)

@ Inner: columns (j)

January 16, 2026

T e e e e e T e e T

Program 21: Nested Loop - Triangle Pattern

#include <stdio.h>
int main() {

}

int i, j;
printf ("Triangle pattern:\n");
for (i = 1; i <= 5; i++) {
for (j = 1; j <= i; j++) {
printf ("* ");

printf ("\n");

return O;

Prof. Jyotiprakash Mishra

Output:

Triangle pattern:
*

*
*
*

* Kk X %
* ¥ *
* ¥

Explanation:
@ Row 1: 1 star
@ Row 2: 2 stars
@ Row i: i stars
°

Inner loop limit is i

January 16, 2026

e e e

Program 22: Nested Loop - Number Pattern

#include <stdio.h> Output:

int main() {
int i, j;
printf ("Number pattern:\n");
for (i = 1; i <= 5; i++) {
for (j = 1; j <= i; j++) {
printf ("%d ", j);

Number pattern:

RRRRe
NN NN
www
ENES

printf ("\n");
¥
return O; Note:
@ Each row prints 1 to i

@ j is the printed value

Prof. Jyotiprakash Mishra i January 16, 2026

Program 23: Nested with break

. #include <stdio.h> Output:

’ int main() {

3 int i, j; Break in nested loop:

3 printf ("Break in nested loop:\n"); Outer]:'=1 12

3 for (i = 1; i <= 3; i++) { Dmder dcs & 2

> printf ("Outer i=%d: ", i); Outer i=3: 1 2

/ for (j = 1; j <= 5; j++) {

3 if (j == 3) {

) N break; |mp0rtant:

)

; j PR 3 @ break exits inner loop only
3 printf ("\n"); .

1 @ Quter loop continues
) return O;

>

@ Each row prints 1 2

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

Program 24: Sum and Average

#include <stdio.h>
int main() {
int n = 5, i;
int sum = 0;
float avg;
printf ("Numbers: ");
for (i = 1; i <= n; i++) {
printf("%d ", i);
sum += i;
}
avg = (float)sum / n;
printf ("\n\nSum: %d\n", sum);
printf ("Average: %.2f\n", avg);
return O;

Prof. Jyotiprakash Mishra

Output:

Numbers: 1 2 3 4 5

Sum: 15
Average: 3.00

Pattern:
@ Accumulate sum in loop
o Calculate average after

@ Type cast for float division

C Programming: Loops January 16, 2026

Program 25: Find Maximum

B e e

#include <stdio.h> Output:
int main() {
int i, max; Numbers: 34 12 89 5 67
int nums[] = {34, 12, 89, 5, 67};
int size = 5; Maximum: 89
max = nums [0];
printf ("Numbers: ");
for (i = 0; i < size; i++) { Pattern:
printf("%d ", nums[il);
if (nums(i] > max) { @ Initialize max to first element
max = nums[il;
}
¥ @ Compare each element
printf ("\n\nMaximum: %d\n", max);

return O;

o Update if larger found

Prof. Jyotiprakash Mishra

C Programming: Loops January 16, 2026

Loop Types - Summary

Loop When to Use Min Executions
while Unknown iterations | O
Condition-based
do-while | At least once 1
Menu systems
for Known iterations 0
Counter-based

Loop Control:
o break: Exit loop immediately

@ continue: Skip to next iteration

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 36/39

Best Practices

Choose the right loop for the task

for loop for known iterations

while loop for unknown iterations

do-while when at least one execution needed

Avoid infinite loops - ensure condition becomes false
Use meaningful variable names (not just i, j, k)
Indent nested loops properly

Use break/continue judiciously

Avoid modifying loop counter inside loop body

®0000006060O0CO

Test edge cases (empty, single item)

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

Common Mistakes

© Off-by-one errors: 1 < nvsi <=n

@ Infinite loops: Forgetting to update counter

© Wrong initialization: Starting at wrong value

© Semicolon after for/while: for(;;); { }

© Modifying counter: Changing i inside loop

O break/continue scope: Only affects nearest loop
@ do-while semicolon: Forgetting ; after while()

© Nested loop confusion: Which loop does break exit?

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

Practice Exercises

Try these programs:

Print Fibonacci series up to n terms

Check if a number is prime

Find GCD of two numbers

Print reverse of a number

Count digits in a number

Print all prime numbers between 1 and 100
Print Floyd’s triangle

Calculate power without pow() function
Print diamond pattern with stars

000000 O0CO0CO

Find sum of digits of a number

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026

	Introduction to Loops
	while Loop
	do-while Loop
	for Loop
	for Loop Variations
	break Statement
	continue Statement
	Nested Loops
	Common Loop Patterns
	Summary

