
C Programming: Loops

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

January 16, 2026

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 1 / 39



Topics Covered

1 Introduction to Loops

2 while Loop

3 do-while Loop

4 for Loop

5 for Loop Variations

6 break Statement

7 continue Statement

8 Nested Loops

9 Common Loop Patterns

10 Summary

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 2 / 39



What are Loops?

Repeatedly execute a block of code

Continue until a condition becomes false

Avoid code repetition

Essential for iterative tasks

Types of Loops in C:

1 while loop - condition checked before execution

2 do-while loop - condition checked after execution

3 for loop - compact loop with initialization

Loop Control:

break - exit loop immediately

continue - skip to next iteration

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 3 / 39



while Loop - Syntax

Syntax:
1 while (condition) {

2 // code to execute

3 // update condition variable

4 }

Flow:

Check condition first

If true, execute block

Repeat until condition is false

May never execute if condition is false initially

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 4 / 39



Program 1: Basic while Loop

1 #include <stdio.h>

2 int main() {

3 int i = 1;

4 printf("Counting 1 to 5:\n");

5 while (i <= 5) {

6 printf("%d ", i);

7 i++;

8 }

9 printf("\nDone !\n");

10 return 0;

11 }

Output:
Counting 1 to 5:

1 2 3 4 5

Done!

Explanation:

i starts at 1

Loop runs while i ¡= 5

i incremented each iteration

Exits when i becomes 6

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 5 / 39



Program 2: while Loop - Sum of Numbers

1 #include <stdio.h>

2 int main() {

3 int n = 5, i = 1, sum = 0;

4 printf("Sum of 1 to %d:\n", n);

5 while (i <= n) {

6 sum += i;

7 printf("Adding %d, sum=%d\n",

8 i, sum);

9 i++;

10 }

11 printf("\nTotal: %d\n", sum);

12 return 0;

13 }

Output:
Sum of 1 to 5:

Adding 1, sum=1

Adding 2, sum=3

Adding 3, sum=6

Adding 4, sum=10

Adding 5, sum=15

Total: 15

Note:

Accumulates sum

Shows each step

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 6 / 39



Program 3: while Loop - Factorial

1 #include <stdio.h>

2 int main() {

3 int n = 5, i = 1;

4 int factorial = 1;

5 printf("Factorial of %d:\n", n);

6 while (i <= n) {

7 factorial *= i;

8 printf("%d! = %d\n", i, factorial );

9 i++;

10 }

11 return 0;

12 }

Output:
Factorial of 5:

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

Explanation:

Multiplies 1*2*3*4*5

Shows each step

5! = 120

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 7 / 39



Program 4: while Loop - Reverse Print

1 #include <stdio.h>

2 int main() {

3 int i = 10;

4 printf("Countdown :\n");

5 while (i > 0) {

6 printf("%d ", i);

7 i--;

8 }

9 printf("\nBlastoff !\n");

10 return 0;

11 }

Output:
Countdown:

10 9 8 7 6 5 4 3 2 1

Blastoff!

Note:

Counts down from 10

Loop decrements i

Stops when i becomes 0

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 8 / 39



do-while Loop - Syntax

Syntax:
1 do {

2 // code to execute

3 // update condition variable

4 } while (condition );

Flow:

Execute block first

Then check condition

Repeat if condition is true

Executes at least once (key difference from while)

Key Point: Note the semicolon after while(condition)

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 9 / 39



Program 5: Basic do-while Loop

1 #include <stdio.h>

2 int main() {

3 int i = 1;

4 printf("Counting with do -while :\n");

5 do {

6 printf("%d ", i);

7 i++;

8 } while (i <= 5);

9 printf("\nDone !\n");

10 return 0;

11 }

Output:
Counting with do -while:

1 2 3 4 5

Done!

Explanation:

Executes body first

Then checks condition

Same result as while here

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 10 / 39



Program 6: do-while vs while - Key Difference

1 #include <stdio.h>

2 int main() {

3 int i = 10;

4 printf("while loop:\n");

5 while (i < 5) {

6 printf("This won’t print\n");

7 }

8 printf("while done\n\n");

9 i = 10;

10 printf("do -while loop:\n");

11 do {

12 printf("This prints once!\n");

13 } while (i < 5);

14 printf("do -while done\n");

15 return 0;

16 }

Output:
while loop:

while done

do-while loop:

This prints once!

do-while done

Key Difference:

while: checks first, may not
execute

do-while: executes once
minimum

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 11 / 39



Program 7: do-while - Menu System

1 #include <stdio.h>

2 int main() {

3 int choice;

4 int count = 0;

5 do {

6 printf("\nMenu :\n");

7 printf("1. Option 1\n");

8 printf("2. Option 2\n");

9 printf("3. Exit\n");

10 choice = (count == 0) ? 1 :

11 (count == 1) ? 2 : 3;

12 printf("Choice: %d\n", choice );

13 count ++;

14 } while (choice != 3);

15 printf("Exiting ...\n");

16 return 0;

17 }

Output:
Menu:

1. Option 1

2. Option 2

3. Exit

Choice: 1

Menu:

1. Option 1

2. Option 2

3. Exit

Choice: 2

Menu:

1. Option 1

2. Option 2

3. Exit

Choice: 3

Exiting ...

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 12 / 39



for Loop - Syntax

Syntax:
1 for (initialization; condition; update) {

2 // code to execute

3 }

Flow:

1 Execute initialization once

2 Check condition

3 If true, execute body

4 Execute update

5 Go to step 2

Equivalent while loop:
1 initialization;

2 while (condition) {

3 // code to execute

4 update;

5 }

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 13 / 39



Program 8: Basic for Loop

1 #include <stdio.h>

2 int main() {

3 int i;

4 printf("for loop 1 to 5:\n");

5 for (i = 1; i <= 5; i++) {

6 printf("%d ", i);

7 }

8 printf("\n\nfor loop 10 to 1:\n");

9 for (i = 10; i >= 1; i--) {

10 printf("%d ", i);

11 }

12 printf("\n");

13 return 0;

14 }

Output:
for loop 1 to 5:

1 2 3 4 5

for loop 10 to 1:

10 9 8 7 6 5 4 3 2 1

Note:

Compact syntax

All loop control in one line

Most common loop type

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 14 / 39



Program 9: for Loop - Even Numbers

1 #include <stdio.h>

2 int main() {

3 int i;

4 printf("Even numbers 1 -20:\n");

5 for (i = 2; i <= 20; i += 2) {

6 printf("%d ", i);

7 }

8 printf("\n\nOdd numbers 1-20:\n");

9 for (i = 1; i <= 20; i += 2) {

10 printf("%d ", i);

11 }

12 printf("\n");

13 return 0;

14 }

Output:
Even numbers 1-20:

2 4 6 8 10 12 14 16 18 20

Odd numbers 1-20:

1 3 5 7 9 11 13 15 17 19

Note:

Custom increment: i += 2

Different start values

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 15 / 39



Program 10: for Loop - Multiplication Table

1 #include <stdio.h>

2 int main() {

3 int n = 7, i;

4 printf("Multiplication table of %d:\n",

5 n);

6 for (i = 1; i <= 10; i++) {

7 printf("%d x %d = %d\n",

8 n, i, n * i);

9 }

10 return 0;

11 }

Output:
Multiplication table of 7:

7 x 1 = 7

7 x 2 = 14

7 x 3 = 21

7 x 4 = 28

7 x 5 = 35

7 x 6 = 42

7 x 7 = 49

7 x 8 = 56

7 x 9 = 63

7 x 10 = 70

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 16 / 39



for Loop Variations

Standard form:
1 for (i = 0; i < 10; i++) { }

Variations:

Multiple initializations: for (i=0, j=10; ...)

Multiple updates: for (...; i++, j--)

Empty parts: for (;;) - infinite loop

No initialization: for (; i<10; i++)

No update: for (i=0; i<10;)

Declare in loop: for (int i=0; i<10; i++)

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 17 / 39



Program 11: Multiple Variables in for

1 #include <stdio.h>

2 int main() {

3 int i, j;

4 printf("Two counters :\n");

5 for (i=1, j=10; i<=5; i++, j--) {

6 printf("i=%d, j=%d, sum=%d\n",

7 i, j, i+j);

8 }

9 return 0;

10 }

Output:
Two counters:

i=1, j=10, sum=11

i=2, j=9, sum=11

i=3, j=8, sum=11

i=4, j=7, sum=11

i=5, j=6, sum=11

Note:

Two variables: i, j

i increments, j decrements

Sum stays constant

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 18 / 39



Program 12: Infinite Loop with Break

1 #include <stdio.h>

2 int main() {

3 int count = 0;

4 printf("Infinite loop demo:\n");

5 for (;;) {

6 printf("Count: %d\n", count);

7 count ++;

8 if (count >= 5) {

9 printf("Breaking out!\n");

10 break;

11 }

12 }

13 printf("Loop exited\n");

14 return 0;

15 }

Output:
Infinite loop demo:

Count: 0

Count: 1

Count: 2

Count: 3

Count: 4

Breaking out!

Loop exited

Note:

for (;;) is infinite

break exits the loop

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 19 / 39



Program 13: Variable Declared in for Loop

1 #include <stdio.h>

2 int main() {

3 printf("C99 style for loop:\n");

4 for (int i = 1; i <= 5; i++) {

5 printf("%d ", i);

6 }

7 printf("\n\nAnother loop:\n");

8 for (int i = 10; i > 5; i--) {

9 printf("%d ", i);

10 }

11 printf("\n");

12 return 0;

13 }

Output:
C99 style for loop:

1 2 3 4 5

Another loop:

10 9 8 7 6

Note:

Variable i declared in loop

Scoped to loop only

C99 feature

Can reuse name i

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 20 / 39



break Statement

Purpose:

Exit loop immediately

Skip remaining iterations

Continue with code after loop

Works with while, do-while, for

Syntax:
1 while (condition) {

2 if (some_condition) {

3 break; // exit loop

4 }

5 }

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 21 / 39



Program 14: break - Find First Multiple

1 #include <stdio.h>

2 int main() {

3 int i;

4 printf("Find first number > 50\n");

5 printf("divisible by 7:\n\n");

6 for (i = 51; i <= 100; i++) {

7 if (i % 7 == 0) {

8 printf("Found: %d\n", i);

9 break;

10 }

11 }

12 printf("Loop ended at i=%d\n", i);

13 return 0;

14 }

Output:
Find first number > 50

divisible by 7:

Found: 56

Loop ended at i=56

Explanation:

Loop starts at 51

First multiple of 7 is 56

break exits immediately

i retains value 56

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 22 / 39



Program 15: break - Search in Loop

1 #include <stdio.h>

2 int main() {

3 int target = 7, i;

4 int found = 0;

5 printf("Searching for %d:\n",

6 target );

7 for (i = 1; i <= 10; i++) {

8 printf("Checking %d\n", i);

9 if (i == target) {

10 found = 1;

11 break;

12 }

13 }

14 if (found) {

15 printf("\nFound at position %d\n",

16 i);

17 }

18 return 0;

19 }

Output:
Searching for 7:

Checking 1

Checking 2

Checking 3

Checking 4

Checking 5

Checking 6

Checking 7

Found at position 7

Note:

Stops when found

Saves iterations

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 23 / 39



continue Statement

Purpose:

Skip rest of current iteration

Jump to next iteration

Loop continues running

Works with while, do-while, for

Syntax:
1 for (i = 0; i < 10; i++) {

2 if (some_condition) {

3 continue; // skip to next iteration

4 }

5 // this code skipped if continue executed

6 }

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 24 / 39



Program 16: continue - Skip Odd Numbers

1 #include <stdio.h>

2 int main() {

3 int i;

4 printf("Even numbers 1 -10:\n");

5 for (i = 1; i <= 10; i++) {

6 if (i % 2 != 0) {

7 continue;

8 }

9 printf("%d ", i);

10 }

11 printf("\n");

12 return 0;

13 }

Output:
Even numbers 1-10:

2 4 6 8 10

Explanation:

If i is odd, continue

printf skipped for odd

Only even numbers print

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 25 / 39



Program 17: continue - Skip Multiples

1 #include <stdio.h>

2 int main() {

3 int i;

4 printf("Numbers 1-20\n");

5 printf("(skip multiples of 3):\n");

6 for (i = 1; i <= 20; i++) {

7 if (i % 3 == 0) {

8 continue;

9 }

10 printf("%d ", i);

11 }

12 printf("\n");

13 return 0;

14 }

Output:
Numbers 1-20

(skip multiples of 3):

1 2 4 5 7 8 10 11 13 14 16 17 19 20

Note:

Skips 3, 6, 9, 12, 15, 18

continue jumps to i++

Loop continues

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 26 / 39



Program 18: break vs continue

1 #include <stdio.h>

2 int main() {

3 int i;

4 printf("With continue :\n");

5 for (i = 1; i <= 10; i++) {

6 if (i == 5) continue;

7 printf("%d ", i);

8 }

9 printf("\n\nWith break :\n");

10 for (i = 1; i <= 10; i++) {

11 if (i == 5) break;

12 printf("%d ", i);

13 }

14 printf("\n");

15 return 0;

16 }

Output:
With continue:

1 2 3 4 6 7 8 9 10

With break:

1 2 3 4

Difference:

continue: skips 5, continues

break: stops at 5, exits loop

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 27 / 39



Nested Loops

Definition:

Loop inside another loop

Inner loop executes completely for each outer iteration

Can nest any loop type

Execution:

Outer loop: 1 iteration

Inner loop: all iterations

Outer loop: next iteration

Inner loop: all iterations again

Common Uses:

2D arrays, matrices

Pattern printing

Nested data structures
Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 28 / 39



Program 19: Nested Loop - Rectangle Pattern

1 #include <stdio.h>

2 int main() {

3 int i, j;

4 int rows = 4, cols = 6;

5 printf("Rectangle pattern :\n");

6 for (i = 1; i <= rows; i++) {

7 for (j = 1; j <= cols; j++) {

8 printf("* ");

9 }

10 printf("\n");

11 }

12 return 0;

13 }

Output:
Rectangle pattern:

* * * * * *

* * * * * *

* * * * * *

* * * * * *

Explanation:

Outer loop: 4 rows

Inner loop: 6 cols each row

Total: 24 stars

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 29 / 39



Program 20: Nested Loop - Multiplication Table

1 #include <stdio.h>

2 int main() {

3 int i, j;

4 printf("Multiplication table :\n");

5 printf(" ");

6 for (i = 1; i <= 5; i++) {

7 printf("%4d", i);

8 }

9 printf("\n");

10 for (i = 1; i <= 5; i++) {

11 printf("%2d:", i);

12 for (j = 1; j <= 5; j++) {

13 printf("%4d", i * j);

14 }

15 printf("\n");

16 }

17 return 0;

18 }

Output:
Multiplication table:

1 2 3 4 5

1: 1 2 3 4 5

2: 2 4 6 8 10

3: 3 6 9 12 15

4: 4 8 12 16 20

5: 5 10 15 20 25

Note:

Outer: rows (i)

Inner: columns (j)

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 30 / 39



Program 21: Nested Loop - Triangle Pattern

1 #include <stdio.h>

2 int main() {

3 int i, j;

4 printf("Triangle pattern :\n");

5 for (i = 1; i <= 5; i++) {

6 for (j = 1; j <= i; j++) {

7 printf("* ");

8 }

9 printf("\n");

10 }

11 return 0;

12 }

Output:
Triangle pattern:

*

* *

* * *

* * * *

* * * * *

Explanation:

Row 1: 1 star

Row 2: 2 stars

Row i: i stars

Inner loop limit is i

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 31 / 39



Program 22: Nested Loop - Number Pattern

1 #include <stdio.h>

2 int main() {

3 int i, j;

4 printf("Number pattern :\n");

5 for (i = 1; i <= 5; i++) {

6 for (j = 1; j <= i; j++) {

7 printf("%d ", j);

8 }

9 printf("\n");

10 }

11 return 0;

12 }

Output:
Number pattern:

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

Note:

Each row prints 1 to i

j is the printed value

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 32 / 39



Program 23: Nested with break

1 #include <stdio.h>

2 int main() {

3 int i, j;

4 printf("Break in nested loop:\n");

5 for (i = 1; i <= 3; i++) {

6 printf("Outer i=%d: ", i);

7 for (j = 1; j <= 5; j++) {

8 if (j == 3) {

9 break;

10 }

11 printf("%d ", j);

12 }

13 printf("\n");

14 }

15 return 0;

16 }

Output:
Break in nested loop:

Outer i=1: 1 2

Outer i=2: 1 2

Outer i=3: 1 2

Important:

break exits inner loop only

Outer loop continues

Each row prints 1 2

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 33 / 39



Program 24: Sum and Average

1 #include <stdio.h>

2 int main() {

3 int n = 5, i;

4 int sum = 0;

5 float avg;

6 printf("Numbers: ");

7 for (i = 1; i <= n; i++) {

8 printf("%d ", i);

9 sum += i;

10 }

11 avg = (float)sum / n;

12 printf("\n\nSum: %d\n", sum);

13 printf("Average: %.2f\n", avg);

14 return 0;

15 }

Output:
Numbers: 1 2 3 4 5

Sum: 15

Average: 3.00

Pattern:

Accumulate sum in loop

Calculate average after

Type cast for float division

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 34 / 39



Program 25: Find Maximum

1 #include <stdio.h>

2 int main() {

3 int i, max;

4 int nums[] = {34, 12, 89, 5, 67};

5 int size = 5;

6 max = nums [0];

7 printf("Numbers: ");

8 for (i = 0; i < size; i++) {

9 printf("%d ", nums[i]);

10 if (nums[i] > max) {

11 max = nums[i];

12 }

13 }

14 printf("\n\nMaximum: %d\n", max);

15 return 0;

16 }

Output:
Numbers: 34 12 89 5 67

Maximum: 89

Pattern:

Initialize max to first element

Compare each element

Update if larger found

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 35 / 39



Loop Types - Summary

Loop When to Use Min Executions
while Unknown iterations 0

Condition-based

do-while At least once 1
Menu systems

for Known iterations 0
Counter-based

Loop Control:

break: Exit loop immediately

continue: Skip to next iteration

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 36 / 39



Best Practices

1 Choose the right loop for the task

2 for loop for known iterations

3 while loop for unknown iterations

4 do-while when at least one execution needed

5 Avoid infinite loops - ensure condition becomes false

6 Use meaningful variable names (not just i, j, k)

7 Indent nested loops properly

8 Use break/continue judiciously

9 Avoid modifying loop counter inside loop body

10 Test edge cases (empty, single item)

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 37 / 39



Common Mistakes

1 Off-by-one errors: i < n vs i <= n

2 Infinite loops: Forgetting to update counter

3 Wrong initialization: Starting at wrong value

4 Semicolon after for/while: for(;;); { }
5 Modifying counter: Changing i inside loop

6 break/continue scope: Only affects nearest loop

7 do-while semicolon: Forgetting ; after while()

8 Nested loop confusion: Which loop does break exit?

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 38 / 39



Practice Exercises

Try these programs:

1 Print Fibonacci series up to n terms

2 Check if a number is prime

3 Find GCD of two numbers

4 Print reverse of a number

5 Count digits in a number

6 Print all prime numbers between 1 and 100

7 Print Floyd’s triangle

8 Calculate power without pow() function

9 Print diamond pattern with stars

10 Find sum of digits of a number

Prof. Jyotiprakash Mishra C Programming: Loops January 16, 2026 39 / 39


	Introduction to Loops
	while Loop
	do-while Loop
	for Loop
	for Loop Variations
	break Statement
	continue Statement
	Nested Loops
	Common Loop Patterns
	Summary

