C Programming: Arrays (1D)

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

January 16, 2026

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Topics Covered

@ Introduction to Arrays
© Array Initialization

© Array Input and Output
@ Array Operations

© Array Manipulation

@ Array Analysis

@ Array Comparison

@ Frequency and Duplicates
© Common Mistakes

@ Summary

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

What are Arrays?

Collection of elements of same type
Stored in contiguous memory locations

(]
(]
o Fixed size (determined at declaration)
o Elements accessed by index (0-based)
(]

Efficient for storing related data

Why Use Arrays?
Store multiple values in one variable

@ Process collections of data
@ Use loops to access elements
@ More efficient than separate variables

Index Range:
@ Array of size n: indices 0 to n-1
o First element: index 0
o Last element: index n-1

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Array Declaration and Syntax

Declaration:

data_type array_name[sizel;

Examples:

int numbers [5]; // array
float scores[10]; // array
char letters[26]; // array

Accessing Elements:

array_name [index] // index
numbers [0] // first
numbers [4] // fifth

Important: Size must be

of 5 integers
of 10 floats
of 26 characters

from 0 to size-1
element
element (last in size 5)

a constant or known at compile time

Prof. Jyotiprakash Mishra

C Programming: Arrays (1D) January 16, 2026

Program 1: Array Declaration and Initialization

#include <stdio.h>
int main() {
int arri[5
int arr2[5
int arr3[] = {
int i;
printf ("arri: ");
for (i = 0; i < 5; i++) {
printf ("%d ", arril[il);
}
printf ("\narr2: ");
for (i = 0; i < 5; i++) {
printf("%d ", arr2[il);

{10, 20, 30, 40, 50};
{1, 2, 3};
5, 10, 15, 20};

1 =
1 =

printf ("\narr3 size: %lu\n",
sizeof (arr3)/sizeof (arr3[0]));
return O;

Output:

arrl: 10 20 30 40 50
arr2: 1 2 3 0 0
arr3 size: 4

Explanation:

arrl: fully initialized

@ arr2: partial init, rest are 0
@ arr3: size inferred as 4
°

Uninitialized elements are 0

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Program 2: Zero Initialization

#include <stdio.h>
int main() {

int arri[5]
int arr2[5]
int arr3[5];
int i;
printf ("arri (={0}): ");
for (i = 0; i < 5; i++) {
printf("%d ", arril[il);

T

= {0
= {};

printf ("\narr2 (={}): ");
for (i = 0; i < 5; i++) {
printf("%d ", arr2[il);

printf ("\narr3 (no init): ");

for (i = 0; i < 5; i++) {
printf ("%d ", arr3[il);

printf ("\n");
return O;

Output:

arrl (={0}): 0 0 0 0 O
arr2 (={}): 00 0 0 0
arr3 (no init): 0 0 O

00

Note:
o {0} sets all to zero
o {} also sets all to zero

@ Uninitialized: undefined (often
0 for global/static)

@ Always initialize arrays!

Prof. Jyotiprakash Mishra

C Programming: Arrays (1D) January 16, 2026

Program 3: Individual Element Assignment

. #include <stdio.h> Output:

’ int main() {

3 int arr[5]; Array elements:

1 int i; arr [0] = 100

> arr [0] = 100; arr [1] = 200

> arr[1] = 200; arr [2] = 300

/ arr[2] = 300; arr [3] = 400

3 arr [3] = 400; arr [4] = 500

) arr [4] = 500;

) printf ("Array elements:\n");

L for (i = 0; i < B; i++) { Note:

4 printf ("arr[%d] = %d\n", i, arr([il);

i . @ Elements assigned individually
return O;

.

@ Index starts at 0

@ Index ends at size-1

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Program 4: Array Input from User

#include <stdio.h> 0utput:

|

’ int main() {

3 int arr[5]; Enter 5 numbers:

1 int i; 5 10 15 20 25

> int inputs[] = {5, 10, 15, 20, 25};

) printf ("Enter 5 numbers:\n"); You entered:

/ for (i = 0; i < 5; i++) { 5 80 85 &9 &2

3 arr[i] = inputs[il;

) printf ("%d ", inputs[il);

) Pattern:

] printf ("\n\nYou entered:\n");

J for (i = 0; i < 5; i++) { 1

3 printf ("%d ", arr[il); e Loop to read InPUt

3 } . . .
S primtf("\n"); @ Store in array using index
) return O; . .

o} @ Loop again to display

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Program 5: Print Array Elements

#include <stdio.h>
int main() {
int numbers([] = {2, 4, 6, 8, 10};

int size = 5;

int i;

printf ("Method 1 - Horizontal:\n");
for (i = 0; i < size; i++) {

printf("%d ", numbers[il);
printf ("\n\nMethod 2 - Vertical:\n");
for (i = 0; i < size; i++) {
printf ("numbers [%d] = %d\n",
i, numbers[il]);
}

return O;

yotiprakash Mishra

Output:

Method 1 - Horizontal:
2 46 8 10

Method 2 - Vertical:

numbers [0] = 2
numbers [1] = 4
numbers [2] = 6
numbers [3] = 8
numbers [4] = 10

Note:
@ Two display methods

@ Loop through all elements

Arrays (1D)

January 16, 2026

Program 6: Sum of Array Eleme

#include <stdio.h>
int main() {
int arr[] = {10, 20, 30, 40, 50};

int size = 5;

int sum = O0;

int i;

printf ("Array: ");

for (i = 0; i < size; i++) {
printf ("%d ", arr[il);
sum += arr[il;

}

printf ("\n\nSum = %d\n", sum);
printf ("Average = %.2f\n",

(float)sum / size);
return O;

Prof. Jyotiprakash Mishra

Output:

Array: 10 20 30 40 50

Sum = 150
Average = 30.00

C Programming: Arrays (1D)

Logic:
@ Initialize sum to 0
@ Loop through array
@ Add each element to sum

o Calculate average

January 16, 2026

Program 7: Find Maximum Element

! #include <stdio.h> Output:

’ int main() {

3 int arr[] = {34, 12, 89, 5, 67, 23}; femags &8 A B b G &8

s int size = 6;

5 int max = arr[0]; Max: 89 at index 2

) int maxIndex = O0;

/ int i; .

3 for (i = 1; i < size; i++) { LOgIC:

) if (arr[i] > max) {

) max = arr[i]; A f I H

] _ (] ssume first element 1S max
maxIndex = ij;

4 b .

S @ Compare with each element

b printf ("Array: ");

> for (i = 0; i < size; i+4) { o Update max if larger found

) printf("%d ", arr[il);

4 .

3 printf ("\n\nMax: %d at index %d\n", @ Track index too

) max, maxIndex);

) return O;

L}

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Program 8: Find Minimum Element

! #include <stdio.h> Output:

’ int main() {

3 int arr[] = {34, 12, 89, 5, 67, 23}; femags &8 A B b G &8

s int size = 6;

5 int min = arr[0]; Min: 5 at index 3

) int minIndex = O0;

/ int i; .

3 for (i = 1; i < size; i++) { LOgIC:

) if (arr[i] < min) {

) min = arr[i]; A f I H H

] : _ (] ssume first element 1S min
minIndex = ij;

4 } .

S @ Compare with each element

b printf ("Array: ");

) for (i = 0; i < size; i++) { @ Update min if smaller found

) printf("%d ", arr[il);

/ }

3 printf ("\n\nMin: %d at index %d\n", L Same pattern as max

) min, minIndex);

) return O;

L}

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

e e

Program 9: Linear Search

#include <stdio.h>
int main() {
int arr[] = {10, 25, 30, 15, 20};
int size = 5;
int target = 15;
int found = 0;

int i;

printf ("Array: ");

for (i = 0; i < size; i++) {
printf ("%d ", arr[il);

printf ("\nSearching for: %d\n\n",
target);
for (i = 0; i < size; i++) {
if (arr[i] == target) {
printf ("Found at index %d\n", i);
found = 1;
break;
s
}
if (!found) {
printf ("Not found\n");

return O;

Prof. Jyotiprakash Mishra

Output:

Array: 10 25 30 15 20
Searching for: 15

Found at index 3

C Programming: Arrays (1D)

Logic:

@ Check each element

o If match, set found flag
@ Break out of loop
o

Report result

January 16, 2026

Program 10: Count Occurrences

. #include <stdio.h> Output:

4 int main() {

3 int arr[] = {5, 2, 5, 8, 5, 3, 5}; Array: 5 2 5 8 56 3 5

g int size = 7; Target: 5

) int target = 5;

) int count = 0; Count: 4

/ int i;

3 printf ("Array: "); .

) for (i = 0; i < size; i++) { L0g|c:

) printf ("%d ", arr[il);

] } EIRT

] printf ("\nTarget: %d\n\n", target); ° Inltlallze Count to 0

3 for (i = 0; i < size; i++) {

1 if (arrli] == target) { @ Loop through array

] count ++;

L @ Increment count on match
" H én ”, H 1

Mo e comnt) @ Don't break - count all

)}

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 14 /30

Program 11: Reverse an Array

! #include <stdio.h> Output:

’ int main() { .

3 int arr[]l = {1, 2, 3, 4, 5}; Weegimaile £ 4 8 0 8

1 int size = 5; Reversed: 5 4 3 2 1

> int temp, i;

) printf ("Original: "); .

7 for (i = 0; i < size; i++) { LOgIC:

3 printf("%d ", arr[il);

) ¥ H H
e (- os i < sizesa; iee) < @ Swap first with last
| temp = arr[il; .

z arr(i] = arrlsize-1-il; @ Swap second with second-last
3 arr[size-1-i] = temp; X .
L) o Continue to middle
> printf ("\nReversed: ");

) for (i = 0; i < size; i++) { H H

: hrimte(1hd e el e Loop size/2 times
3

) printf ("\n");

) return O;

L}

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Program 12: Copy Array

. #include <stdio.h> Output:
’ int main() {
3 int srcl]l = {10, 20, 30, 40, 50}; HomseEas 80 2y &Y <y By
! int dest[5]; Destination: 10 20 30 40 50
> int size = 5;
) int i;
/ for (i = 0; i < size; i++) { Note:
3 dest[i] = srcl[il;
SN . @ Cannot do: dest = src
printf ("Source: ");
1 for (i = 0; i < size; i++) {
] printf ("%d ", srclil); o MUSt Copy element by element
3 }
© printf("\mDestination: "); @ Loop through entire array
5 for (i = 0; i < size; i++) {
i £("%da ", 4 i H .
N et e Both arrays must exist
3 printf ("\n");
) return O;
)}

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Program 13: Shift Elemen

! #include <stdio.h> Output:

’ int main() { L

3 int arr(] = {1, 2, 3, 4, 5}; Weelpimele £ 4 8 G 6

. int size = 5; Shifted left: 2 3 4 5 1

> int first, 1i;

) printf ("Original: "); .

/ for (i = 0; i < size; i++) { LOgIC:

3 printf ("%d ", arr[il);

S @ Save first element
) first = arr[0];

! for (i = 0; i < size-1; i++) { .

z arr[i] = arr[i+1]; o Shift all left by one
3 }

3 arr[size-1] = first; [Put ﬁrst at end
> printf ("\nShifted left: ");

) for (i = 0; i < size; i++) { H H

7 Peintr i e artin @ Circular rotation
3

) printf ("\n");

) return O;

L}

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Program 14: Shift Elemen

#include <stdio.h>
int main() {

int arr[] = {1, 2, 3, 4, 5};

int size = 5;

int last, i;

printf ("Original: ");

for (i = 0; i < size; i++) {
printf ("%d ", arr[il);

¥

last = arr[size-1];

for (i = size-1; i > 0; i--) {
arr[i] = arr[i-1];

}

arr [0] = last;

printf ("\nShifted right: ");

for (i = 0; i < size; i++) {
printf ("%d ", arr[il);

printf ("\n");
return O;

Output:

Original:
Shifted right:

12345
51234

Logic:

Save last element
Shift all right by one
Put last at beginning
Reverse of left shift

Prof. Jyotiprakash Mishra

January 16, 2026

C Programming: Arrays (1D)

Program 15: Check if Sorted

#include <stdio.h>
int main() {

int arri[] = {1,
int arr2[] = {1,
int size = 5;
int sorted = 1;
int i;

printf ("Array 1:
for (i = 0; i <
printf ("%d ",
¥
for (i = 0; i <
if (arri[i] >
sorted = 0;
break;
}
}
printf ("\nSorted
sorted ?
return O;

Output:
2, 3, 4, 5}; Array 1: 1 2 3 4 5
3, 2, 4, 5}; Sorted: Yes
, Logic:
srres w0t @ Assume sorted = true
size-1; i+4) { @ Check consecutive pairs

arr1[i+1]) { .
o If any pair out of order, not

sorted

: %s\n",
"Yes" : "No");

@ Break early if found

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Program 16: Count Even

and Odd

#include <stdio.h>
int main() {
int arr[] = {12, 7, 18, 5, 9, 14};
int size = 6;
int even = 0, odd = 0;
int 1i;
printf ("Array: ");
for (i = 0; i < size; i++) {
printf("%d ", arr[il);
if (arr[i] % 2 == 0) {
even++;
} else {
odd++;
¥
}
printf ("\n\nEven count: %d\n", even);
printf ("0dd count: %d\n", odd);
return O;

Prof. Jyotiprakash Mishra

Output:

Array: 12 7 18 5 9 14

Even count: 3
0dd count: 3

C Programming: Arrays (1D)

Logic:

Initialize both counters to 0
Check each element

Increment appropriate counter

Report both counts

January 16, 2026 20/30

Program 17: Second Largest Element

e e

#include <stdio.h>
int main() {
int arr[] = {34, 12, 89, 5, 67};

int size = 5;
int first, second, 1ij;
first = second = arr[0];
for (i = 1; i < size; i++) {
if (arr[i] > first) {
second = first;
first = arr[il;
} else if (arr[i] > second &&
arr[i] != first) {
second = arr[il;
}
}
printf ("Array: ");
for (i = 0; i < size; i++) {
printf("%d ", arr([il);
¥

printf ("\n\nLargest: %d\n", first);

printf ("Second largest: %d\n",
second) ;

return O;

Output:

Array: 34 12 89 5 67

Largest: 89
Second largest: 67

Logic:
@ Track first and second
o If larger than first, update both

@ Else if larger than second,
update second

Handle duplicates

Prof. Jyotiprakash Mishra

C Programming: Arrays (1D)

January 16, 2026 21/30

Program 18: Compare Two

. #include <stdio.h> Output:

’ int main() {

3 int arrt[] = {1, 2, 3, 4, 5}; arrl vs arr2: Equal

1 int arr2[] = {1, 2, 3, 4, 5}; arrl vs arr3: Not equal

5 int arr3[] = {1, 2, 9, 4, 5};

) int size = 5; .

! int equal = 1; L0g|c:

3 int i;

) for (i = 0; i < size; i++) { _

) if (arr1[i] != arr2[il) { ° Assume equal = true
| equal = 0;

z break; @ Compare element by element
3 }

Ll @ If any mismatch, not equal
> printf ("arrl vs arr2: Y%s\n",

] equal ? "Equal" : "Not equal");

: I @ Can break early

3 for (i = 0; i < size; i++) {

) if (arr1[i] != arr3[i]) {

) equal = 0;

| break;

J s

3 }

3 printf ("arrl vs arr3: %s\n",

> equal ? "Equal" : "Not equal");

) return O;

-}

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Program 19: Merge Two Arrays

#include <stdio.h>
int main() {
int arrif] {1, 2, 3};
int arr2[] {4, 5, 6};
int merged[6];
int 1i;
for (i = 0; i < 3; i++) {
merged[i] = arri[i];
}
for (i = 0; i < 3; i++) {
merged [3+i] = arr2[il;

printf ("Array 1: ");
for (i = 0; i < 3; i++) {
printf ("%d ", arri[il);

printf ("\nArray 2: ");

for (i = 0; i < 3; i++) {
printf ("%d ", arr2[il);

¥

printf ("\nMerged: ");

for (i = 0; i < 6; i++) {
printf ("%d ", merged[il);

printf ("\n");
return O;

Output:

Array 1: 1
Array 2: 4
Merged: 1 2 3 4 5 6

Logic:
@ Create new array of combined
size
o Copy first array
@ Copy second array after first
@ Display all three

Prof. Jyotiprakash Mishra

C Programming: Arrays (1D) January 16, 2026 23/30

Program 20: Find Duplicates

#include <stdio.h> Output:

int main() {
int arr[] = {1, 2, 3, 2, 4, 3, 5}; Array: 1 2 3 2 4 3 5
int size = 7;
int i, j; Duplicates: 2 3

int printed[7] = {0};
printf ("Array: "); .
for (i = 0; i < size; i++) { LOgIC:

printf ("%d ", arr[il);
printf ("\n\nDuplicates: "); ° NeSted Ioops
for (i = 0; i < size; i++) {

if (printed[i]) continue; o Compare eaCh W|th reSt
for (j = i+1l; j < size; j++) { . .
if (arrli] == arr[j] & @ Track printed to avoid
'printed[i]) { .
printf("%d ", arrl[il); duplicates
printed[i] = 1;
break; P H | I
3 (] rint on Yy once per value
¥
}

printf ("\n");
return O;

e e

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

e e

Program 21: Frequency of Each Element

#include <stdio.h>
int main() {
int arr[] = {1, 2, 1, 3, 2, 1};
int size = 6;
int visited[6] = {0};
int i, j, count;
printf ("Array: ");
for (i = 0; i < size; i++) {
printf ("%d ", arr[il);

printf ("\n\nFrequency:\n");
for (i = 0; i < size; i++) {
if (visited[i]) continue;
count = 1;
for (j = i+1; j < size; j++) {
if (arr[i] == arr[jl) {
count++;
visited[j]l = 1;
}
s

printf ("%d occurs %d time(s)\n",

arr[i], count);
}
return O;

}

Prof. Jyotiprakash Mishra

Output:

Array: 1 21 3 2 1

Frequency:

1 occurs 3 time(s)
2 occurs 2 time(s)
3 occurs 1 time(s)

C Programming: Arrays (1D)

Logic:

Track visited elements

Count occurrences

Mark duplicates as visited

Print each unique element
once

January 16, 2026

Program 22: Array Index Out

of Bounds

#include <stdio.h>
int main() {
int arr[5] = {10, 20, 30, 40, 50};
int 1i;
printf ("Valid access:\n");
for (i = 0; i < 5; i++) {
printf ("arr[%d] = %d\n", i, arr([il]);

printf ("\nWARNING: Invalid access\n");
printf ("arr [5] would be undefined\n");

printf ("arr[-1] would be undefined\n");

printf ("\nValid indices: 0 to 4\n");
printf ("Array size: 5\n");
return O;

yotiprakash Mishra

Output:
Valid access:
arr [0] = 10
arr [1] = 20
arr [2] = 30
arr [3] = 40
arr [4] = 50

WARNING: Invalid access
arr [6] would be undefined
arr [-1] would be undefined

Valid indices: O to 4
Array size: 5

Warning:
@ C doesn't check bounds

@ Out of bounds = undefined
behavior

Arrays (1D)

January 16, 2026

Arrays - Summary

Key Points:
@ Collection of same-type elements
Fixed size, declared at compile time
Zero-based indexing (0 to size-1)
Stored in contiguous memory
Elements accessed by index: arr[i]
Cannot be assigned directly (must copy element-by-element)
Size calculated: sizeof (arr)/sizeof (arr[0])

Partial initialization fills rest with 0

Uninitialized arrays have undefined values

Common Operations:
@ Traversal, search, sum, max/min, reverse, copy

@ Requires loops to process all elements

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Best Practices

© Always initialize arrays before use

Check bounds - valid indices: 0 to size-1

Use constants for array size (easier to modify)
Pass size to functions along with array

Use meaningful names - not just arr, a, b
Validate input when reading into arrays

Use loops for array operations

Document assumptions about array contents

©O00©0006O00O0

Consider using sizeof (arr)/sizeof (arr[0]) for size

@ Avoid magic numbers - use named constants

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 28 /30

Common Mistakes

®0000006060O0CO

Off-by-one errors: Using i <= size instead of i < size

Out of bounds access: Accessing arr [size] or negative indices
Uninitialized arrays: Reading before writing

Wrong size: Using wrong variable for array size

Direct assignment: Trying arrl = arr2

Forgetting index 0: Starting loops at 1

Size confusion: Forgetting last index is size-1

Not checking empty: Assuming array has elements

Modifying in loop: Changing size while iterating

Integer overflow: Sum of large numbers

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

Practice Exercises

Try these programs:

Insert element at specific position
Delete element from specific position
Find all pairs that sum to a target
Remove duplicates from array

Rotate array by k positions

Find missing number in sequence 1 to n
Move all zeros to end

Check if array is palindrome

0000000 O0CO

Find intersection of two arrays

@ Separate even and odd numbers

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026

	Introduction to Arrays
	Array Initialization
	Array Input and Output
	Array Operations
	Array Manipulation
	Array Analysis
	Array Comparison
	Frequency and Duplicates
	Common Mistakes
	Summary

