
C Programming: Arrays (1D)

Prof. Jyotiprakash Mishra
mail@jyotiprakash.org

January 16, 2026

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 1 / 30



Topics Covered

1 Introduction to Arrays

2 Array Initialization

3 Array Input and Output

4 Array Operations

5 Array Manipulation

6 Array Analysis

7 Array Comparison

8 Frequency and Duplicates

9 Common Mistakes

10 Summary

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 2 / 30



What are Arrays?

Collection of elements of same type

Stored in contiguous memory locations

Fixed size (determined at declaration)

Elements accessed by index (0-based)

Efficient for storing related data

Why Use Arrays?

Store multiple values in one variable

Process collections of data

Use loops to access elements

More efficient than separate variables

Index Range:

Array of size n: indices 0 to n-1

First element: index 0

Last element: index n-1
Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 3 / 30



Array Declaration and Syntax

Declaration:
1 data_type array_name[size];

Examples:
1 int numbers [5]; // array of 5 integers

2 float scores [10]; // array of 10 floats

3 char letters [26]; // array of 26 characters

Accessing Elements:
1 array_name[index] // index from 0 to size -1

2 numbers [0] // first element

3 numbers [4] // fifth element (last in size 5)

Important: Size must be a constant or known at compile time

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 4 / 30



Program 1: Array Declaration and Initialization

1 #include <stdio.h>

2 int main() {

3 int arr1 [5] = {10, 20, 30, 40, 50};

4 int arr2 [5] = {1, 2, 3};

5 int arr3[] = {5, 10, 15, 20};

6 int i;

7 printf("arr1: ");

8 for (i = 0; i < 5; i++) {

9 printf("%d ", arr1[i]);

10 }

11 printf("\narr2: ");

12 for (i = 0; i < 5; i++) {

13 printf("%d ", arr2[i]);

14 }

15 printf("\narr3 size: %lu\n",

16 sizeof(arr3)/ sizeof(arr3 [0]));

17 return 0;

18 }

Output:
arr1: 10 20 30 40 50

arr2: 1 2 3 0 0

arr3 size: 4

Explanation:

arr1: fully initialized

arr2: partial init, rest are 0

arr3: size inferred as 4

Uninitialized elements are 0

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 5 / 30



Program 2: Zero Initialization

1 #include <stdio.h>

2 int main() {

3 int arr1 [5] = {0};

4 int arr2 [5] = {};

5 int arr3 [5];

6 int i;

7 printf("arr1 (={0}): ");

8 for (i = 0; i < 5; i++) {

9 printf("%d ", arr1[i]);

10 }

11 printf("\narr2 (={}): ");

12 for (i = 0; i < 5; i++) {

13 printf("%d ", arr2[i]);

14 }

15 printf("\narr3 (no init): ");

16 for (i = 0; i < 5; i++) {

17 printf("%d ", arr3[i]);

18 }

19 printf("\n");

20 return 0;

21 }

Output:
arr1 (={0}): 0 0 0 0 0

arr2 (={}): 0 0 0 0 0

arr3 (no init): 0 0 0 0 0

Note:

{0} sets all to zero

{} also sets all to zero

Uninitialized: undefined (often
0 for global/static)

Always initialize arrays!

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 6 / 30



Program 3: Individual Element Assignment

1 #include <stdio.h>

2 int main() {

3 int arr [5];

4 int i;

5 arr[0] = 100;

6 arr[1] = 200;

7 arr[2] = 300;

8 arr[3] = 400;

9 arr[4] = 500;

10 printf("Array elements :\n");

11 for (i = 0; i < 5; i++) {

12 printf("arr[%d] = %d\n", i, arr[i]);

13 }

14 return 0;

15 }

Output:
Array elements:

arr [0] = 100

arr [1] = 200

arr [2] = 300

arr [3] = 400

arr [4] = 500

Note:

Elements assigned individually

Index starts at 0

Index ends at size-1

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 7 / 30



Program 4: Array Input from User

1 #include <stdio.h>

2 int main() {

3 int arr [5];

4 int i;

5 int inputs [] = {5, 10, 15, 20, 25};

6 printf("Enter 5 numbers :\n");

7 for (i = 0; i < 5; i++) {

8 arr[i] = inputs[i];

9 printf("%d ", inputs[i]);

10 }

11 printf("\n\nYou entered :\n");

12 for (i = 0; i < 5; i++) {

13 printf("%d ", arr[i]);

14 }

15 printf("\n");

16 return 0;

17 }

Output:
Enter 5 numbers:

5 10 15 20 25

You entered:

5 10 15 20 25

Pattern:

Loop to read input

Store in array using index

Loop again to display

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 8 / 30



Program 5: Print Array Elements

1 #include <stdio.h>

2 int main() {

3 int numbers [] = {2, 4, 6, 8, 10};

4 int size = 5;

5 int i;

6 printf("Method 1 - Horizontal :\n");

7 for (i = 0; i < size; i++) {

8 printf("%d ", numbers[i]);

9 }

10 printf("\n\nMethod 2 - Vertical :\n");

11 for (i = 0; i < size; i++) {

12 printf("numbers [%d] = %d\n",

13 i, numbers[i]);

14 }

15 return 0;

16 }

Output:
Method 1 - Horizontal:

2 4 6 8 10

Method 2 - Vertical:

numbers [0] = 2

numbers [1] = 4

numbers [2] = 6

numbers [3] = 8

numbers [4] = 10

Note:

Two display methods

Loop through all elements

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 9 / 30



Program 6: Sum of Array Elements

1 #include <stdio.h>

2 int main() {

3 int arr[] = {10, 20, 30, 40, 50};

4 int size = 5;

5 int sum = 0;

6 int i;

7 printf("Array: ");

8 for (i = 0; i < size; i++) {

9 printf("%d ", arr[i]);

10 sum += arr[i];

11 }

12 printf("\n\nSum = %d\n", sum);

13 printf("Average = %.2f\n",

14 (float)sum / size);

15 return 0;

16 }

Output:
Array: 10 20 30 40 50

Sum = 150

Average = 30.00

Logic:

Initialize sum to 0

Loop through array

Add each element to sum

Calculate average

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 10 / 30



Program 7: Find Maximum Element

1 #include <stdio.h>

2 int main() {

3 int arr[] = {34, 12, 89, 5, 67, 23};

4 int size = 6;

5 int max = arr [0];

6 int maxIndex = 0;

7 int i;

8 for (i = 1; i < size; i++) {

9 if (arr[i] > max) {

10 max = arr[i];

11 maxIndex = i;

12 }

13 }

14 printf("Array: ");

15 for (i = 0; i < size; i++) {

16 printf("%d ", arr[i]);

17 }

18 printf("\n\nMax: %d at index %d\n",

19 max , maxIndex );

20 return 0;

21 }

Output:
Array: 34 12 89 5 67 23

Max: 89 at index 2

Logic:

Assume first element is max

Compare with each element

Update max if larger found

Track index too

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 11 / 30



Program 8: Find Minimum Element

1 #include <stdio.h>

2 int main() {

3 int arr[] = {34, 12, 89, 5, 67, 23};

4 int size = 6;

5 int min = arr [0];

6 int minIndex = 0;

7 int i;

8 for (i = 1; i < size; i++) {

9 if (arr[i] < min) {

10 min = arr[i];

11 minIndex = i;

12 }

13 }

14 printf("Array: ");

15 for (i = 0; i < size; i++) {

16 printf("%d ", arr[i]);

17 }

18 printf("\n\nMin: %d at index %d\n",

19 min , minIndex );

20 return 0;

21 }

Output:
Array: 34 12 89 5 67 23

Min: 5 at index 3

Logic:

Assume first element is min

Compare with each element

Update min if smaller found

Same pattern as max

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 12 / 30



Program 9: Linear Search

1 #include <stdio.h>

2 int main() {

3 int arr[] = {10, 25, 30, 15, 20};

4 int size = 5;

5 int target = 15;

6 int found = 0;

7 int i;

8 printf("Array: ");

9 for (i = 0; i < size; i++) {

10 printf("%d ", arr[i]);

11 }

12 printf("\nSearching for: %d\n\n",

13 target );

14 for (i = 0; i < size; i++) {

15 if (arr[i] == target) {

16 printf("Found at index %d\n", i);

17 found = 1;

18 break;

19 }

20 }

21 if (!found) {

22 printf("Not found\n");

23 }

24 return 0;

25 }

Output:
Array: 10 25 30 15 20

Searching for: 15

Found at index 3

Logic:

Check each element

If match, set found flag

Break out of loop

Report result

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 13 / 30



Program 10: Count Occurrences

1 #include <stdio.h>

2 int main() {

3 int arr[] = {5, 2, 5, 8, 5, 3, 5};

4 int size = 7;

5 int target = 5;

6 int count = 0;

7 int i;

8 printf("Array: ");

9 for (i = 0; i < size; i++) {

10 printf("%d ", arr[i]);

11 }

12 printf("\nTarget: %d\n\n", target );

13 for (i = 0; i < size; i++) {

14 if (arr[i] == target) {

15 count ++;

16 }

17 }

18 printf("Count: %d\n", count );

19 return 0;

20 }

Output:
Array: 5 2 5 8 5 3 5

Target: 5

Count: 4

Logic:

Initialize count to 0

Loop through array

Increment count on match

Don’t break - count all

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 14 / 30



Program 11: Reverse an Array

1 #include <stdio.h>

2 int main() {

3 int arr[] = {1, 2, 3, 4, 5};

4 int size = 5;

5 int temp , i;

6 printf("Original: ");

7 for (i = 0; i < size; i++) {

8 printf("%d ", arr[i]);

9 }

10 for (i = 0; i < size /2; i++) {

11 temp = arr[i];

12 arr[i] = arr[size -1-i];

13 arr[size -1-i] = temp;

14 }

15 printf("\nReversed: ");

16 for (i = 0; i < size; i++) {

17 printf("%d ", arr[i]);

18 }

19 printf("\n");

20 return 0;

21 }

Output:
Original: 1 2 3 4 5

Reversed: 5 4 3 2 1

Logic:

Swap first with last

Swap second with second-last

Continue to middle

Loop size/2 times

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 15 / 30



Program 12: Copy Array

1 #include <stdio.h>

2 int main() {

3 int src[] = {10, 20, 30, 40, 50};

4 int dest [5];

5 int size = 5;

6 int i;

7 for (i = 0; i < size; i++) {

8 dest[i] = src[i];

9 }

10 printf("Source: ");

11 for (i = 0; i < size; i++) {

12 printf("%d ", src[i]);

13 }

14 printf("\nDestination: ");

15 for (i = 0; i < size; i++) {

16 printf("%d ", dest[i]);

17 }

18 printf("\n");

19 return 0;

20 }

Output:
Source: 10 20 30 40 50

Destination: 10 20 30 40 50

Note:

Cannot do: dest = src

Must copy element by element

Loop through entire array

Both arrays must exist

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 16 / 30



Program 13: Shift Elements Left

1 #include <stdio.h>

2 int main() {

3 int arr[] = {1, 2, 3, 4, 5};

4 int size = 5;

5 int first , i;

6 printf("Original: ");

7 for (i = 0; i < size; i++) {

8 printf("%d ", arr[i]);

9 }

10 first = arr [0];

11 for (i = 0; i < size -1; i++) {

12 arr[i] = arr[i+1];

13 }

14 arr[size -1] = first;

15 printf("\nShifted left: ");

16 for (i = 0; i < size; i++) {

17 printf("%d ", arr[i]);

18 }

19 printf("\n");

20 return 0;

21 }

Output:
Original: 1 2 3 4 5

Shifted left: 2 3 4 5 1

Logic:

Save first element

Shift all left by one

Put first at end

Circular rotation

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 17 / 30



Program 14: Shift Elements Right

1 #include <stdio.h>

2 int main() {

3 int arr[] = {1, 2, 3, 4, 5};

4 int size = 5;

5 int last , i;

6 printf("Original: ");

7 for (i = 0; i < size; i++) {

8 printf("%d ", arr[i]);

9 }

10 last = arr[size -1];

11 for (i = size -1; i > 0; i--) {

12 arr[i] = arr[i-1];

13 }

14 arr[0] = last;

15 printf("\nShifted right: ");

16 for (i = 0; i < size; i++) {

17 printf("%d ", arr[i]);

18 }

19 printf("\n");

20 return 0;

21 }

Output:
Original: 1 2 3 4 5

Shifted right: 5 1 2 3 4

Logic:

Save last element

Shift all right by one

Put last at beginning

Reverse of left shift

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 18 / 30



Program 15: Check if Sorted

1 #include <stdio.h>

2 int main() {

3 int arr1[] = {1, 2, 3, 4, 5};

4 int arr2[] = {1, 3, 2, 4, 5};

5 int size = 5;

6 int sorted = 1;

7 int i;

8 printf("Array 1: ");

9 for (i = 0; i < size; i++) {

10 printf("%d ", arr1[i]);

11 }

12 for (i = 0; i < size -1; i++) {

13 if (arr1[i] > arr1[i+1]) {

14 sorted = 0;

15 break;

16 }

17 }

18 printf("\nSorted: %s\n",

19 sorted ? "Yes" : "No");

20 return 0;

21 }

Output:
Array 1: 1 2 3 4 5

Sorted: Yes

Logic:

Assume sorted = true

Check consecutive pairs

If any pair out of order, not
sorted

Break early if found

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 19 / 30



Program 16: Count Even and Odd

1 #include <stdio.h>

2 int main() {

3 int arr[] = {12, 7, 18, 5, 9, 14};

4 int size = 6;

5 int even = 0, odd = 0;

6 int i;

7 printf("Array: ");

8 for (i = 0; i < size; i++) {

9 printf("%d ", arr[i]);

10 if (arr[i] % 2 == 0) {

11 even ++;

12 } else {

13 odd++;

14 }

15 }

16 printf("\n\nEven count: %d\n", even);

17 printf("Odd count: %d\n", odd);

18 return 0;

19 }

Output:
Array: 12 7 18 5 9 14

Even count: 3

Odd count: 3

Logic:

Initialize both counters to 0

Check each element

Increment appropriate counter

Report both counts

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 20 / 30



Program 17: Second Largest Element

1 #include <stdio.h>

2 int main() {

3 int arr[] = {34, 12, 89, 5, 67};

4 int size = 5;

5 int first , second , i;

6 first = second = arr [0];

7 for (i = 1; i < size; i++) {

8 if (arr[i] > first) {

9 second = first;

10 first = arr[i];

11 } else if (arr[i] > second &&

12 arr[i] != first) {

13 second = arr[i];

14 }

15 }

16 printf("Array: ");

17 for (i = 0; i < size; i++) {

18 printf("%d ", arr[i]);

19 }

20 printf("\n\nLargest: %d\n", first);

21 printf("Second largest: %d\n",

22 second );

23 return 0;

24 }

Output:
Array: 34 12 89 5 67

Largest: 89

Second largest: 67

Logic:

Track first and second

If larger than first, update both

Else if larger than second,
update second

Handle duplicates

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 21 / 30



Program 18: Compare Two Arrays

1 #include <stdio.h>

2 int main() {

3 int arr1[] = {1, 2, 3, 4, 5};

4 int arr2[] = {1, 2, 3, 4, 5};

5 int arr3[] = {1, 2, 9, 4, 5};

6 int size = 5;

7 int equal = 1;

8 int i;

9 for (i = 0; i < size; i++) {

10 if (arr1[i] != arr2[i]) {

11 equal = 0;

12 break;

13 }

14 }

15 printf("arr1 vs arr2: %s\n",

16 equal ? "Equal" : "Not equal");

17 equal = 1;

18 for (i = 0; i < size; i++) {

19 if (arr1[i] != arr3[i]) {

20 equal = 0;

21 break;

22 }

23 }

24 printf("arr1 vs arr3: %s\n",

25 equal ? "Equal" : "Not equal");

26 return 0;

27 }

Output:
arr1 vs arr2: Equal

arr1 vs arr3: Not equal

Logic:

Assume equal = true

Compare element by element

If any mismatch, not equal

Can break early

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 22 / 30



Program 19: Merge Two Arrays

1 #include <stdio.h>

2 int main() {

3 int arr1[] = {1, 2, 3};

4 int arr2[] = {4, 5, 6};

5 int merged [6];

6 int i;

7 for (i = 0; i < 3; i++) {

8 merged[i] = arr1[i];

9 }

10 for (i = 0; i < 3; i++) {

11 merged [3+i] = arr2[i];

12 }

13 printf("Array 1: ");

14 for (i = 0; i < 3; i++) {

15 printf("%d ", arr1[i]);

16 }

17 printf("\nArray 2: ");

18 for (i = 0; i < 3; i++) {

19 printf("%d ", arr2[i]);

20 }

21 printf("\nMerged: ");

22 for (i = 0; i < 6; i++) {

23 printf("%d ", merged[i]);

24 }

25 printf("\n");

26 return 0;

27 }

Output:
Array 1: 1 2 3

Array 2: 4 5 6

Merged: 1 2 3 4 5 6

Logic:

Create new array of combined
size

Copy first array

Copy second array after first

Display all three

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 23 / 30



Program 20: Find Duplicates

1 #include <stdio.h>

2 int main() {

3 int arr[] = {1, 2, 3, 2, 4, 3, 5};

4 int size = 7;

5 int i, j;

6 int printed [7] = {0};

7 printf("Array: ");

8 for (i = 0; i < size; i++) {

9 printf("%d ", arr[i]);

10 }

11 printf("\n\nDuplicates: ");

12 for (i = 0; i < size; i++) {

13 if (printed[i]) continue;

14 for (j = i+1; j < size; j++) {

15 if (arr[i] == arr[j] &&

16 !printed[i]) {

17 printf("%d ", arr[i]);

18 printed[i] = 1;

19 break;

20 }

21 }

22 }

23 printf("\n");

24 return 0;

25 }

Output:
Array: 1 2 3 2 4 3 5

Duplicates: 2 3

Logic:

Nested loops

Compare each with rest

Track printed to avoid
duplicates

Print only once per value

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 24 / 30



Program 21: Frequency of Each Element

1 #include <stdio.h>

2 int main() {

3 int arr[] = {1, 2, 1, 3, 2, 1};

4 int size = 6;

5 int visited [6] = {0};

6 int i, j, count;

7 printf("Array: ");

8 for (i = 0; i < size; i++) {

9 printf("%d ", arr[i]);

10 }

11 printf("\n\nFrequency :\n");

12 for (i = 0; i < size; i++) {

13 if (visited[i]) continue;

14 count = 1;

15 for (j = i+1; j < size; j++) {

16 if (arr[i] == arr[j]) {

17 count ++;

18 visited[j] = 1;

19 }

20 }

21 printf("%d occurs %d time(s)\n",

22 arr[i], count);

23 }

24 return 0;

25 }

Output:
Array: 1 2 1 3 2 1

Frequency:

1 occurs 3 time(s)

2 occurs 2 time(s)

3 occurs 1 time(s)

Logic:

Track visited elements

Count occurrences

Mark duplicates as visited

Print each unique element
once

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 25 / 30



Program 22: Array Index Out of Bounds

1 #include <stdio.h>

2 int main() {

3 int arr[5] = {10, 20, 30, 40, 50};

4 int i;

5 printf("Valid access :\n");

6 for (i = 0; i < 5; i++) {

7 printf("arr[%d] = %d\n", i, arr[i]);

8 }

9 printf("\nWARNING: Invalid access\n");

10 printf("arr [5] would be undefined\n");

11 printf("arr[-1] would be undefined\n");

12 printf("\nValid indices: 0 to 4\n");

13 printf("Array size: 5\n");

14 return 0;

15 }

Output:
Valid access:

arr [0] = 10

arr [1] = 20

arr [2] = 30

arr [3] = 40

arr [4] = 50

WARNING: Invalid access

arr [5] would be undefined

arr[-1] would be undefined

Valid indices: 0 to 4

Array size: 5

Warning:

C doesn’t check bounds

Out of bounds = undefined
behavior

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 26 / 30



Arrays - Summary

Key Points:

Collection of same-type elements

Fixed size, declared at compile time

Zero-based indexing (0 to size-1)

Stored in contiguous memory

Elements accessed by index: arr[i]

Cannot be assigned directly (must copy element-by-element)

Size calculated: sizeof(arr)/sizeof(arr[0])

Partial initialization fills rest with 0

Uninitialized arrays have undefined values

Common Operations:

Traversal, search, sum, max/min, reverse, copy

Requires loops to process all elements

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 27 / 30



Best Practices

1 Always initialize arrays before use

2 Check bounds - valid indices: 0 to size-1

3 Use constants for array size (easier to modify)

4 Pass size to functions along with array

5 Use meaningful names - not just arr, a, b

6 Validate input when reading into arrays

7 Use loops for array operations

8 Document assumptions about array contents

9 Consider using sizeof(arr)/sizeof(arr[0]) for size

10 Avoid magic numbers - use named constants

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 28 / 30



Common Mistakes

1 Off-by-one errors: Using i <= size instead of i < size

2 Out of bounds access: Accessing arr[size] or negative indices

3 Uninitialized arrays: Reading before writing

4 Wrong size: Using wrong variable for array size

5 Direct assignment: Trying arr1 = arr2

6 Forgetting index 0: Starting loops at 1

7 Size confusion: Forgetting last index is size-1

8 Not checking empty: Assuming array has elements

9 Modifying in loop: Changing size while iterating

10 Integer overflow: Sum of large numbers

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 29 / 30



Practice Exercises

Try these programs:

1 Insert element at specific position

2 Delete element from specific position

3 Find all pairs that sum to a target

4 Remove duplicates from array

5 Rotate array by k positions

6 Find missing number in sequence 1 to n

7 Move all zeros to end

8 Check if array is palindrome

9 Find intersection of two arrays

10 Separate even and odd numbers

Prof. Jyotiprakash Mishra C Programming: Arrays (1D) January 16, 2026 30 / 30


	Introduction to Arrays
	Array Initialization
	Array Input and Output
	Array Operations
	Array Manipulation
	Array Analysis
	Array Comparison
	Frequency and Duplicates
	Common Mistakes
	Summary

